Time Value of Money

BUSI 721: Data-Driven Finance I
Kerry Back, Rice University

Overview

- $\mathrm{PV}=$ present value $=$ today's value
- $\mathrm{FV}=$ future value = value at some particular time in the future
- $r=$ interest rate, discount rate, expected rate of return, required rate of return, cost of capital, ...
- $\mathrm{n}=$ number of periods (could be years or months or ...)

$$
\mathrm{PV}=\frac{\mathrm{FV}}{(1+r)^{n}} \quad \Leftrightarrow \quad \mathrm{FV}=\mathrm{PV} \times(1+r)^{n}
$$

- used for loan calculations, retirement planning, evaluation of corporate investment projects, . . .

Example

Suppose we invest $\$ 1,000$ at an annual interest rate of 5% for 2 years.

End of Year 1:

At the end of the first year, we'll have earn interest on our initial investment equal to $\$ 1,000$ multiplied by 0.05 . So, the balance at the end of the year would be our initial investment plus the interest earned.

Balance = Initial Investment + Interest
Balance $=\$ 1,000 \times 1+\$ 1,000 \times 0.05$
Balance $=\$ 1,000 \times 1.05$

End of Year 2:

During the second year, we'll earn interest on the balance from the end of the first year, which is $\$ 1,000 \times 1.05$.

Interest for the second year: $(\$ 1,000 \times 1.05) \times 0.05$
Balance $=(\$ 1,000 \times 1.05) \times 1+(\$ 1,000 \times 1.05) \times 0.05$
Balance $=\$ 1,000 \times 1.05 \times 1.05$
Balance $=\$ 1,000 \times 1.05^{2}$
Continuing this pattern, for any given year n, the future value of the investment will be:

$$
\mathrm{FV}=\$ 1,000 \times 1.05^{n}
$$

Loan Balance Example

Imagine you take out a loan of $\$ 10,000$ at an annual interest rate of 5%. You agree to repay the loan in annual installments of $\$ 2,500$.

End of Year 1:

- Interest for the year: $\$ 10,000 \times 0.05=\$ 500$
- Total amount owed (before payment): $\$ 10,000+\$ 500=\$ 10,500$
- After making the annual payment of $\$ 2,500$, the remaining balance is: $\$ 10,500-\$ 2,500=\$ 8,000$

End of Year 2:

- Interest for the year: $\$ 8,000 \times 0.05=\$ 400$
- Total amount owed (before payment): $\$ 8,000+\$ 400=\$ 8,400$
- After making the annual payment of $\$ 2,500$, the remaining balance is: $\$ 8,400-\$ 2,500=\$ 5,900$

And so on...

Loan Balances as FVs

- $B=$ balance
- $P=$ payment
- $\mathrm{r}=$ interest rate
- each period $B \mapsto B(1+r)$ - P

$$
\begin{aligned}
& B_{1}=B_{0}(1+r)-P \\
& B_{2}=B_{1}(1+r)-P \\
& B_{2}=\left[B_{0}(1+r)-P\right](1+r)-P \\
& B_{2}=B_{0}(1+r)^{2}-P(1+r)-P
\end{aligned}
$$

Likewise,

$$
B_{3}=B_{0}(1+r)^{3}-P(1+r)^{2}-P(1+r)-P, \ldots
$$

Loan Balances and PVs

- Balance $=\mathrm{FV}$ of initial balance - combined FVs of payments
- Divide by $(1+r)^{\wedge} \mathrm{n}$ to convert to PVs.

$$
\begin{aligned}
& \frac{B_{2}}{(1+r)^{2}}=B_{0}-\frac{P}{1+r}-\frac{P}{(1+r)^{2}} \\
& \frac{B_{3}}{(1+r)^{3}}=B_{0}-\frac{P}{1+r}-\frac{P}{(1+r)^{2}}-\frac{P}{(1+r)^{3}}, \ldots
\end{aligned}
$$

- PV of future balance is initial balance minus combined PVs of payments

Annuity Factor and Loan Terms

- After the final payment, the future balance must be zero.
- So, PV of future balance $=$ initial balance - combined PVs of payments implies
- initial balance $=$ combined PVs of all payments

$$
\begin{aligned}
B_{0} & =\frac{P}{1+r}+\frac{P}{(1+r)^{2}}+\cdots+\frac{P}{(1+r)^{n}} \\
B_{0} & =P\left[\frac{1}{1+r}+\frac{1}{(1+r)^{2}}+\cdots+\frac{1}{(1+r)^{n}}\right]
\end{aligned}
$$

- Expression in braces is called the Annuity Factor

Calculating Annuity Factors

- In Excel, use pv(r, n, 1)
- In python, use either of the following:

In [35]: $r=0.05$
 $\mathrm{n}=3$

import numpy_financial as npf
print(npf.pv(rate=r, nper=n, pmt=-1))
\# or
import numpy as np
$p v _f a c t o r s=(1+r)^{* *} n p . a r a n g e(-1,-n-1,-1)$
print(np.sum(pv_factors))
2.72324802937048
2.7232480293704784

Formula for Annuity Factor

There is also a somewhat simpler formula for the sum of PV factors.

$$
\text { Annuity Factor }=\frac{1}{r}\left[1-\frac{1}{(1+r)^{n}}\right]
$$

In [36]: annuity_factor $=(1 / r) *\left(1-(1+r)^{* *}(-n)\right)$ print(annuity_factor)
2.7232480293704797

pv, pmt, and rate

- What will the payment on a loan be?
- How much can you borrow?
- What must the rate be in order for your desired payment to work?

In [38]: required_payment $=$ npf.pmt(rate=rate, pv=amount_borrowed, nper=num_years, $f v=0$
)
print(f"your payment will be \$\{-required_payment:,.2f\}")
your payment will be $\$ 9,495.86$

```
In [39]: payment = 10000
num_years = 5
rate = 0.06
loan_amount = npf.pv(rate=rate, nper=num_years, pmt=-payment, fv=0)
print(f"you can borrow ${loan_amount:,.2f}")
you can borrow $42,123.64
```

```
In [40]: amount_borrowed = 40000
payment = 10000
num_years = 5
rate = npf.rate(pv=amount_borrowed, nper=num_years, pmt=-payment, fv=0)
print(f"you need a rate of {rate:,.2%} or less")
you need a rate of 7.93% or less
```

In [41]: \# Loan with a Balloon
amount_borrowed = 40000
payment = 10000
num_years = 5
rate $=0.1$

```
In [42]: balloon = - npf.fv(
        pv=amount_borrowed,
        nper=num_years,
        pmt=-payment,
        rate=rate
)
print(f"you will have a balloon payment of ${balloon:,.2f}")
    you will have a balloon payment of $3,369.40
```


Calculating with numpy

- pv = pmt * annuity_factor to get loan amount
- pmt = pv / annuity_factor to get payment
- use scipy.optimize.solve or similar to get rate

In [43]: amount_borrowed $=40000$

```
num_years = 5
```

rate $=0.06$
pv_factors $=(1+r a t e) * * n p . a r a n g e\left(-1, \quad-n u m _y e a r s-1, ~-1\right)$
annuity_factor = np.sum(pv_factors)
payment = amount_borrowed / annuity_factor
print(f"you can borrow \$\{loan_amount:,.2f\}")
you can borrow $\$ 42,123.64$

Monthly Payments

- Banks quote annual rates
- They divide by 12 to get the monthly rate.
- The number of periods (nper) in the formulas should be the number of months (=12*num_years).

```
In [45]: monthly_rate = annual_rate / 12
num_months = 12 * num_years
required_payment = npf.pmt(
        rate=monthly_rate,
        pv=amount_borrowed,
        nper=num_months,
        fv=0
)
print(f"your payment will be ${-required_payment:,.2f} each month")
```

your payment will be $\$ 773.31$ each month

Retirement Planning (future value problems)

- Imagine you want to have x dollars in n years and expect to make an annual return of r. How much do you need to save each year?
- Imagine you want to spend x dollars per year for m years beginning in year n and expect to make an annual return of r . How much must you save in years $1, \ldots, n$?
- The balance at any future date is the sum of the future values of all of the cash flows.
- Future value of all savings for the first question.
- Future value of all savings and spending for the second question, treating spending as negative.
- For the first question, find a savings amount such that the sum of future values is x.
- Sum of future values $=x$ if and only if sum of present values $=P V$ of x
- For the second question, find a savings amount such that the sum of future values (including negative spending) is zero
- Sum of future values $=0$ if and only if sum of present values $=0$
- Solve: PV of savings = PV of spending

Our Goal

Or maybe this

>

Question 1

```
In [46]: desired_balance = 2000000
num_years = 30
rate = 0.06
npf.pmt(
    pv=0,
    fv=desired_balance,
    rate=rate,
    nper=num_years
)
```

Out [46]: -25297.822980094406

```
In [47]: # alternatively, matching PVs:
    npf.pmt(
        pv=desired_balance/(1+rate)**num_years,
        rate=rate,
        nper=num_years,
        fv=0
)
```

Out [47]: -25297.822980094406

Question 2

```
In [48]: spending = 100000
num_spending_years = 25
num_saving_years = 30
rate = 0.06
pv_spending_at_retirement = npf.pv(
    rate=rate,
    nper=num_spending_years,
    pmt=-spending
)
print(f"We need to have ${pv_spending_at_retirement:,.0f} at retirement.")
We need to have $1,278,336 at retirement.
```

In [49]: saving = -npf.pmt(
$\mathrm{pv}=0$,
rate=rate,
fv=pv_spending_at_retirement, nper=num_saving_years
)
print(f"We need to save \$\{saving:,.0f\} each year.")
We need to save $\$ 16,170$ each year.

