Simulation, Moments, and Real Returns

BUSI 721: Data-Driven Finance I

Kerry Back, Rice University

Outline

- Retirement planning
- Review
- With growing savings
- Inflation and real returns
- Simulation
- Risk in the long run
- Skewness and kurtosis

RETIREMENT PLANNING

REVIEW

Main Time-Value-of-Money Formulas

$$
\begin{aligned}
& \mathrm{PV}=\frac{\mathrm{FV}}{(1+r)^{n}} \quad \Leftrightarrow \quad \mathrm{FV}=\mathrm{PV} \times(1+r)^{n} \\
& B_{0}=P\left[\frac{1}{1+r}+\frac{1}{(1+r)^{2}}+\cdots+\frac{1}{(1+r)^{n}}\right]
\end{aligned}
$$

Problem to Solve

- Hope to spend y dollars per year during n years of retirement
- Save x dollars per year during m years of working
- Expect to earn r per year on investments.
- How large does x need to be?
- Timeline:
- years $1, \ldots, m \rightarrow$ save x
- years $m+1, \ldots, m+n \rightarrow$ spend y.

Match PVs

- Compute PV of spending at year m (standard annuity formula)
- Discount to present - divide by $(1+r)^{m}$
- Match PV of savings:

$$
\begin{gathered}
x \times\left[\frac{1}{1+r}+\cdots+\frac{1}{(1+r)^{m}}\right] \\
=y \times \frac{1}{(1+r)^{m}}\left[\frac{1}{1+r}+\cdots+\frac{1}{(1+r)^{n}}\right]
\end{gathered}
$$

Match FVs

- Or match the values at the end of year m: account balance = retirement target
- Multiply both PVs by $(1+r)^{m}$ to get these FVs:

$$
\begin{aligned}
& x \times\left[(1+r)^{m-1}+\cdots+1\right] \\
= & y \times\left[\frac{1}{1+r}+\cdots+\frac{1}{(1+r)^{n}}\right]
\end{aligned}
$$

EXAMPLE

In [257]: import numpy_financial as npf
spending $=100000$
num_spending_years = 25
num_saving_years = 30
$r=0.06$
pv_spending_at_retirement = npf.pv(
rate=r,
nper=num_spending_years, pmt=-spending
)
print(f"We need to have \$\{pv_spending_at_retirement:,.0f\} at retirement.")
We need to have $\$ 1,278,336$ at retirement.

MATCH PVs

In [258]: savings = - npf.pmt(
pv=pv_spending_at_retirement / (1+r)**num_saving_years, rate=r, $f \mathrm{v}=0$, nper=num_saving_years)
print(f"We need to save $\$\{$ savings:,.0f\} each year.")
We need to save $\$ 16,170$ each year.

MATCH FVs

```
In [259]: savings = - npf.pmt(
    pv=0,
    rate=r,
    fv=pv_spending_at_retirement,
    nper=num_saving_years
)
```

print(f"We need to save \$\{savings:,.0f\} each year.")
We need to save $\$ 16,170$ each year.

GROWING SAVINGS

- Save x first year, $x(1+g)$ second year, $x(1+g)^{2}$ third year, etc.
- E.g., $x=20,000, g=0.05$, second year is 21,000 , third year is 22,050 , etc.
- FV of savings:

$$
\begin{aligned}
& x(1+r)^{m-1}+x(1+g)(1+r)^{m-2}+\cdots+x(1+g)^{m-1} \\
= & x\left[(1+r)^{m-1}+(1+g)(1+r)^{m-2}+\cdots+(1+g)^{m-1}\right]
\end{aligned}
$$

- Solve for x :

$$
x=\text { target } /\left[(1+r)^{m-1}+(1+g)(1+r)^{m-2}+\cdots+(1+g)^{m-1}\right]
$$

MATCH FVs

In [260]: import numpy as np
$\mathrm{g}=0.03$
$\mathrm{m}=$ num_saving_years
factors $=(1+g)^{* *}$ np.arange(m)
factors ${ }^{*}=(1+r)^{* *}$ np.arange $(m-1,-1,-1)$
$\mathrm{x}=\mathrm{pv}$ _spending_at_retirement / np.sum(factors)
print(f"We need to save $\$\{x:, .0 f\}$ each year.")
We need to save $\$ 11,564$ each year.

REAL RETURNS

- Inflation rate is \% change in Consumer Price Index (CPI)
- Real rate of return is inflation-adjusted rate
- Example:
- Item costs $\$ 100$ today
- Can earn 8% on investments
- Inflation is 3%
- Instead of buying today, you could invest $\$ 100$.
- Have $\$ 108$ in one year, item costs $\$ 103$, buy 1 and have $\$ 5$ left over
- Extra $\$ 5$ will buy $5 / 103$ units. Real rate of return is $5 / 103$.

Real Return

- Real rate of return in example is

$$
5 / 103=(108-103) / 103=108 / 103-1=1.08 / 1.03-1
$$

- Real rate of return in general is

$$
r_{\text {real }}=\frac{1+r_{\text {nominal }}}{1+\text { inflation }}-1
$$

- Also called "return in constant dollars"

Retirement Planning and Inflation

- Do everything with expected real rate of return
- If savings are expected to grow, use the real growth rate

$$
g_{\text {real }}=\frac{1+g_{\text {nominal }}}{1+\text { inflation }}-1
$$

- Then retirement spending will be in today's dollars.
- https://learn-investments.rice-business.org/borrowing-saving/inflation

SIMULATION

>

Independent random normals

- Annual returns are approximately normally distributed.
- And are approximately independent from one year to the next.
- Simulate random normals with np.random.normal.

In [261]: mean $=0.1$
stdev = 0.15
np.random.seed(0)
np.random.normal(loc=mean, scale=stdev)

Out[261]: 0.36460785189514955

SIMULATE MULTIPLE YEARS

```
In [262]: n = 10
np.random.seed(0)
rets = np.random.normal(
    loc=mean,
    scale=stdev,
    size=n
)
rets
Out[262]: array([ 0.36460785, 0.16002358, 0.2468107, 0.43613398, 0.3801337
,
\(-0.04659168,0.24251326,0.07729642,0.08451717,0.1615897\)
8])
```


Compound Returns

- How much would \$1 grow to?
- Answer is np.prod(1+rets)
- What is the total return over the n years?
- Answer is np.prod(1+rets) - 1

In [263]: print(f"\$1 would grow to \$\{np.prod(1+rets): .3f\}") print(f"the total return is \{np.prod(1+rets)-1: .1\%\}")
\$1 would grow to \$ 6.289
the total return is 528.9%

SIMULATE MULTIPLE YEARS MULTIPLE TIMES

```
In [264]: num_prds = 10
    num_sims = 5
    np.random.seed(0)
    rets = np.random.normal(
        loc=mean,
        scale=stdev,
        size=(num_prds, num_sims)
)
np.prod((1+rets), axis=0)
Out[264]: array([1.30568504, 4.01010011, 2.92173927, 2.62512839, 4.17660966])
```


DISTRIBUTION OF THE COMPOUND RETURN

- Compounding produces positive skewness
- So, the median is below the mean
- The difference between median and mean is larger when there is more risk.

```
In [265]: num_sims = 1000
    np.random.seed(0)
    rets = np.random.normal(
        loc=mean,
        scale=stdev,
        size=(num_prds, num_sims)
)
compound_rets = np.prod((1+rets), axis=0) - 1
import pandas as pd
pd.Series(compound_rets).describe()
Out[265]: count 1000.000000
    mean 1.525291
    std 1.123597
    min -0.464922
    25% 0.737312
    50% 1.330335
    75% 2.061266
max 7.906556
dtype: float64
```

In [267]: import plotly.express as px
px.histogram(compound_rets)

RISK IN THE LONG RUN

- Law of large numbers does not eliminate risk (uncertainty) in the long run
- Law of large numbers applies to average of gambles, not the sum
- So it applies to the average return, not the cumulative return
- Theorem: a random walk walks everywhere!
- However, if the game is in your favor (the house at a casino or the stock market) and you play a long time, it is very unlikely you will end with less than you start.
https://learn-investments.rice-business.org/risk/long-run

MOMENTS OF DISTRIBUTIONS

- Non-central moments
- first $=$ mean $=E[x]$
- second $=E\left[x^{2}\right]$
- third $=E\left[x^{3}\right]$
- fourth $=E\left[x^{4}\right]$
- Central moments
- $\bar{x}=$ mean
- second $=$ variance $=E\left[(x-\bar{x})^{2}\right]$
- third $=E\left[(x-\bar{x})^{3}\right]$
- fourth $=E\left[(x-\bar{x})^{4}\right]$
- Standardized moments
- $\sigma=$ stdev $=\sqrt{\text { variance }}$
- third $=$ skewness $=E\left[(x-\bar{x})^{3}\right] / \sigma^{3}$
- fourth $=$ kurtosis $=E\left[(x-\bar{x})^{4}\right] / \sigma^{4}$

EXAMPLE 1: NORMAL

```
In [268]: # central moments
np.random.seed(0)
x = np.random.normal(size=100000)
mean = np.mean(x)
variance = np.mean(
    (x-mean)**2
)
third = np.mean(
        (x-mean)**3
)
fourth = np.mean(
        (x-mean)**4
)
print(f"mean={mean:.2f}, variance={variance:.2f}, third={third:.2f}, fourth={
mean=0.00, variance=0.99, third=-0.01, fourth=3.00
```

```
In [269]: # standardized central moments
stdev = np.sqrt(variance)
skewness = third / stdev**3
kurtosis = fourth / stdev**4
print(f"stdev={stdev:.2f}, skewness={skewness:.2f}, kurtosis={kurtosis:.2f}")
stdev=1.00, skewness=-0.01, kurtosis=3.03
```


Theorem

For any normal distribution, skewness $=0$ and kurtosis $=3$.

Adjusted Kurtosis and Leptokurtosis

- The common definition of kurtosis is

$$
\frac{E\left[(x-\operatorname{mean})^{4}\right]}{\text { stdev }^{3}}-3
$$

- With this definition, the kurtosis of a normal distribution is 0 .
- Positive kurtosis means unadjusted kurtosis >3. This is often called "excess kurtosis."
- Distributions with positive kurtosis are called leptokurtic. Or fat tailed.

EXAMPLE 2: LOGNORMAL

In [270]: \# central moments

```
y = np.exp(x)
```

mean $=n p . m e a n(y)$
variance = np.mean(
$(y-m e a n) * * 2$
)
third $=$ np.mean(
(y-mean)**3
)
fourth $=$ np.mean(
(y-mean)**4
)
print(f"mean=\{mean:.2f\}, variance=\{variance:. $2 f\}$, third=\{third:. $2 f\}$, fourth=\{
mean=1.65, variance=4.60, third=55.13, fourth=1429.58

In [271]:

```
# standardized central moments
stdev = np.sqrt(variance)
skewness = third / stdev**3
kurtosis = fourth / stdev**4
print(f"stdev={stdev:.2f}, skewness={skewness:.2f}, kurtosis={kurtosis:.2f}")
```

stdev=2.15, skewness=5.58, kurtosis=67.44

In [272]: px.histogram(y)

EXAMPLE 3: MIXTURE

In [273]: np.random.seed (0)

```
x1 = np.random.normal(
    loc=0.1,
    scale=0.1,
    size=100000
)
x2 = np.random.normal(
    loc=0.1,
    scale=0.5,
    size=100000
)
z = np.random.randint(2, size=100000)
y = np.where(z, x1, x2)
```

In [274]: px.histogram(y)

In [275]: \# central moments
mean $=n p \cdot m e a n(y)$
variance = np.mean(
$(y$-mean $) * * 2$
)
third $=$ np.mean(
$(y$-mean $) * * 3$
)
fourth $=$ np.mean $($
$(y-$ mean $) * * 4$
)
print(f"mean=\{mean:.2f\}, variance=\{variance:.2f\}, third=\{third:.2f\}, fourth=\{
mean=0.10, variance=0.13, third=0.00, fourth=0.09

In [276]:

```
# standardized central moments
stdev = np.sqrt(variance)
skewness = third / stdev**3
kurtosis = fourth / stdev**4
print(f"stdev={stdev:.2f}, skewness={skewness:.2f}, kurtosis={kurtosis:.2f}")
```

stdev=0.36, skewness=0.01, kurtosis=5.56

