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RETIREMENT PLANNING



REVIEW



Main Time-Value-of-Money Formulas
PV = ⇔ FV = PV × (1 + r)n

FV

(1 + r)n

B0 = P [ + + ⋯ + ]1

1 + r

1

(1 + r)2

1

(1 + r)n



Problem to Solve
Hope to spend  dollars per year during  years of retirement
Save  dollars per year during  years of working
Expect to earn  per year on investments.
How large does  need to be?
Timeline:

years  save 
years  spend .

y n

x m

r

x

1, … , m → x

m + 1, … , m + n → y



Match PVs
Compute PV of spending at year  (standard annuity formula)
Discount to present - divide by 
Match PV of savings:

m

(1 + r)m

x × [ + ⋯ + ]1

1 + r

1

(1 + r)m

= y × [ + ⋯ + ]1

(1 + r)m

1

1 + r

1

(1 + r)n



Match FVs
Or match the values at the end of year m: account balance = retirement target
Multiply both PVs by  to get these FVs:(1 + r)m

x × [(1 + r)m−1 + ⋯ + 1]

= y × [ + ⋯ + ]1

1 + r

1

(1 + r)n



EXAMPLE



In [257]: import numpy_financial as npf

spending = 100000
num_spending_years = 25
num_saving_years = 30
r = 0.06

pv_spending_at_retirement = npf.pv(
    rate=r, 
    nper=num_spending_years, 
    pmt=-spending
)

print(f"We need to have ${pv_spending_at_retirement:,.0f} at retirement.")

We need to have $1,278,336 at retirement.



MATCH PVs



In [258]: savings = - npf.pmt(
    pv=pv_spending_at_retirement / (1+r)**num_saving_years, 
    rate=r, 
    fv=0, 
    nper=num_saving_years
)

print(f"We need to save ${savings:,.0f} each year.")

We need to save $16,170 each year.



MATCH FVs



In [259]: savings = - npf.pmt(
    pv=0, 
    rate=r, 
    fv=pv_spending_at_retirement, 
    nper=num_saving_years
)

print(f"We need to save ${savings:,.0f} each year.")

We need to save $16,170 each year.



GROWING SAVINGS



Save  first year,  second year,  third year, etc.
E.g., , , second year is , third year is , etc.
FV of savings:

Solve for :

x x(1 + g) x(1 + g)2

x = 20, 000 g = 0.05 21, 000 22, 050

x(1 + r)m−1 + x(1 + g)(1 + r)m−2 + ⋯ + x(1 + g)m−1

= x[(1 + r)m−1 + (1 + g)(1 + r)m−2 + ⋯ + (1 + g)m−1]

x

x = target/[(1 + r)m−1 + (1 + g)(1 + r)m−2 + ⋯ + (1 + g)m−1]



MATCH FVs



In [260]: import numpy as np 

g = 0.03
m = num_saving_years

factors = (1+g) ** np.arange(m) 
factors *= (1+r) ** np.arange(m-1, -1, -1)
x = pv_spending_at_retirement / np.sum(factors)

print(f"We need to save ${x:,.0f} each year.")

We need to save $11,564 each year.



REAL RETURNS



Inflation rate is % change in Consumer Price Index (CPI)
Real rate of return is inflation-adjusted rate
Example:

Item costs  today
Can earn  on investments
Inflation is 
Instead of buying today, you could invest .
Have  in one year, item costs , buy  and have  left over
Extra  will buy  units. Real rate of return is .

$100

8%

3%

$100

$108 $103 1 $5

$5 5/103 5/103



Real Return
Real rate of return in example is

Real rate of return in general is

Also called "return in constant dollars"

5/103 = (108 − 103)/103 = 108/103 − 1 = 1.08/1.03 − 1

rreal = − 1
1 + rnominal

1 + inflation



Retirement Planning and Inflation
Do everything with expected real rate of return
If savings are expected to grow, use the real growth rate

Then retirement spending will be in today's dollars.

greal = − 1
1 + gnominal

1 + inflation

https://learn-investments.rice-business.org/borrowing-saving/inflation

https://learn-investments.rice-business.org/borrowing-saving/inflation


SIMULATION



Independent random normals
Annual returns are approximately normally distributed.
And are approximately independent from one year to the next.
Simulate random normals with np.random.normal.



In [261]: mean = 0.1
stdev = 0.15
np.random.seed(0)
np.random.normal(loc=mean, scale=stdev)

Out[261]: 0.36460785189514955



SIMULATE MULTIPLE YEARS



In [262]: n = 10
np.random.seed(0)

rets = np.random.normal(
    loc=mean,
    scale=stdev,
    size=n
)
rets

Out[262]: array([ 0.36460785,  0.16002358,  0.2468107 ,  0.43613398,  0.3801337 
,
       -0.04659168,  0.24251326,  0.07729642,  0.08451717,  0.1615897
8])



Compound Returns
How much would $1 grow to?

Answer is np.prod(1+rets)
What is the total return over the  years?

Answer is np.prod(1+rets) - 1
n



In [263]: print(f"$1 would grow to ${np.prod(1+rets): .3f}")
print(f"the total return is {np.prod(1+rets)-1: .1%}")

$1 would grow to $ 6.289
the total return is  528.9%



SIMULATE MULTIPLE YEARS MULTIPLE TIMES



In [264]: num_prds = 10
num_sims = 5
np.random.seed(0)

rets = np.random.normal(
    loc=mean,
    scale=stdev,
    size=(num_prds, num_sims)
)
np.prod((1+rets), axis=0)

Out[264]: array([1.30568504, 4.01010011, 2.92173927, 2.62512839, 4.17660966])



DISTRIBUTION OF THE COMPOUND RETURN



Compounding produces positive skewness
So, the median is below the mean
The difference between median and mean is larger when there is more risk.



In [265]: num_sims = 1000
np.random.seed(0)

rets = np.random.normal(
    loc=mean,
    scale=stdev,
    size=(num_prds, num_sims)
)
compound_rets = np.prod((1+rets), axis=0) - 1

import pandas as pd 
pd.Series(compound_rets).describe()

Out[265]: count    1000.000000
mean        1.525291
std         1.123597
min        -0.464922
25%         0.737312
50%         1.330335
75%         2.061266
max         7.906556
dtype: float64



In [267]: import plotly.express as px

px.histogram(compound_rets)
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RISK IN THE LONG RUN



Law of large numbers does not eliminate risk (uncertainty) in the long run
Law of large numbers applies to average of gambles, not the sum

So it applies to the average return, not the cumulative return
Theorem: a random walk walks everywhere!

However, if the game is in your favor (the house at a casino or the stock market)
and you play a long time, it is very unlikely you will end with less than you start.

https://learn-investments.rice-business.org/risk/long-run

https://learn-investments.rice-business.org/risk/long-run


MOMENTS OF
DISTRIBUTIONS



Non-central moments
first = mean = 
second = 
third = 
fourth = 

Central moments
 = mean

second = variance = 
third = 
fourth = 

E[x]

E[x2]

E[x3]

E[x4]

x̄

E[(x − x̄)2]

E[(x − x̄)3]

E[(x − x̄)4]



Standardized moments
 = stdev = 

third = skewness = 
fourth = kurtosis = 

σ √variance

E[(x − x̄)3]/σ
3

E[(x − x̄)4]/σ
4



EXAMPLE 1: NORMAL



In [268]: # central moments

np.random.seed(0)
x = np.random.normal(size=100000)
mean = np.mean(x)
variance = np.mean(
    (x-mean)**2
)
third = np.mean(
    (x-mean)**3
)
fourth = np.mean(
    (x-mean)**4
)
print(f"mean={mean:.2f}, variance={variance:.2f}, third={third:.2f}, fourth={f

mean=0.00, variance=0.99, third=-0.01, fourth=3.00



In [269]: # standardized central moments

stdev = np.sqrt(variance)

skewness = third / stdev**3

kurtosis = fourth / stdev**4

print(f"stdev={stdev:.2f}, skewness={skewness:.2f}, kurtosis={kurtosis:.2f}")

stdev=1.00, skewness=-0.01, kurtosis=3.03



Theorem
For any normal distribution, skewness = 0 and kurtosis = 3.



Adjusted Kurtosis and Leptokurtosis
The common definition of kurtosis is

With this definition, the kurtosis of a normal distribution is 0.
Positive kurtosis means unadjusted kurtosis > 3. This is often called "excess
kurtosis."
Distributions with positive kurtosis are called leptokurtic. Or fat tailed.

− 3
E[(x − mean)4]

stdev3



EXAMPLE 2: LOGNORMAL



In [270]: # central moments

y = np.exp(x)
mean = np.mean(y)
variance = np.mean(
    (y-mean)**2
)
third = np.mean(
    (y-mean)**3
)
fourth = np.mean(
    (y-mean)**4
)
print(f"mean={mean:.2f}, variance={variance:.2f}, third={third:.2f}, fourth={f

mean=1.65, variance=4.60, third=55.13, fourth=1429.58



In [271]: # standardized central moments

stdev = np.sqrt(variance)

skewness = third / stdev**3

kurtosis = fourth / stdev**4

print(f"stdev={stdev:.2f}, skewness={skewness:.2f}, kurtosis={kurtosis:.2f}")

stdev=2.15, skewness=5.58, kurtosis=67.44



In [272]: px.histogram(y)
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EXAMPLE 3: MIXTURE



In [273]: np.random.seed(0)
x1 = np.random.normal(
    loc=0.1,
    scale=0.1,
    size=100000
)
x2 = np.random.normal(
    loc=0.1,
    scale=0.5,
    size=100000
)
z = np.random.randint(2, size=100000)
y = np.where(z, x1, x2)



In [274]: px.histogram(y)
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In [275]: # central moments

mean = np.mean(y)
variance = np.mean(
    (y-mean)**2
)
third = np.mean(
    (y-mean)**3
)
fourth = np.mean(
    (y-mean)**4
)
print(f"mean={mean:.2f}, variance={variance:.2f}, third={third:.2f}, fourth={f

mean=0.10, variance=0.13, third=0.00, fourth=0.09



In [276]: # standardized central moments

stdev = np.sqrt(variance)

skewness = third / stdev**3

kurtosis = fourth / stdev**4

print(f"stdev={stdev:.2f}, skewness={skewness:.2f}, kurtosis={kurtosis:.2f}")

stdev=0.36, skewness=0.01, kurtosis=5.56


