Simulation. Moments. and
Real Returns

BUSI 721: Data-Driven Finance |
Kerry Back, Rice University

Outline

e Retirement planning

= Review

= With growing savings
e Inflation and real returns
e Simulation

= Risk in the long run

m Skewness and kurtosis

RETIREMENT PLANNING

REVIEW

Main Time-Value-of-Money Formulas

F
PV = v & FV=PVx(1+7r)"
(14 7)»
1 1 1
By =P + -+

Problem to Solve

e Hope to spend y dollars per year during n years of retirement

Save x dollars per year during m years of working

Expect to earn r per year on investments.

How large does x need to be?

Timeline;

= years1,...,m — savex
= yearsm+1,...,m+n — spend y.

Match PVs

e Compute PV of spending at year m (standard annuity formula)
e Discount to present - divide by (1 4+ 7)™
e Match PV of savings:

1 1
T X _|_..._|_—
[

1 [1 2]
Y A 1y (1+r)n

Match FVs

e Or match the values at the end of year m: account balance = retirement target
e Multiply both PVs by (1 + 7)™ to get these FVs:

zx [(L+r)"" 4+ 1]

1 1

1—|—'r+. +m

:y)(

EXAMPLE

import numpy_financial as npf

spending = 100000
num_spending years = 25
num_saving years = 30
r=0.06

pv_spending at_retirement = npf.pv(
rate=r,
nper=num_spending_years,
pmt=-spending

)

print(f"We need to have ${pv_spending at retirement:,.0f} at retirement.")

We need to have $1,278,336 at retirement.

MATCH PVs

savings = - npf.pmt(
pv=pv_spending at retirement / (1+r)**num_saving years,
rate=r,
fv=0,
nper=num_saving_years

)

print(f"We need to save ${savings:,.0f} each year.")

We need to save $16,170 each year.

MATCH FVs

savings = - npf.pmt(
pv=0,
rate=r,
fv=pv_spending at retirement,
nper=num_saving_years

)

print(f"We need to save ${savings:,.0f} each year.")

We need to save $16,170 each year.

GROWING SAVINGS

Save z first year, (1 + g) second year, (1 + g)? third year, etc.
E.g., x = 20,000, g = 0.05, second year is 21, 000, third year is 22, 050, etc.
FV of savings:

2(1+r)" 21+ g)(L+r)™ 2 b (14 g)™ !
=T [(1 +r)" 4+ L+ +r)" 24+ (14 g)m1]
Solve for x:

r = target/ [(1)"+ (L+ g+ 24+ (1 + g)m1]

MATCH FVs

import numpy as np

0.03
num_saving years

g
m

factors = (1+g) ** np.arange(m)
factors *= (1+r) ** npp.arange(m-1, -1, -1)
X = pv_spending at_retirement / np.sum(factors)

print(f"We need to save ${x:,.0f} each year.")

We need to save $11,564 each year.

REAL RETURNS

e Inflation rate is % change in Consumer Price Index (CPI)
e Real rate of return is inflation-adjusted rate
e Example:
= |tem costs $100 today
= Can earn 8% on investments
= Inflation is 3%
= Instead of buying today, you could invest $100.
= Have $108 in one year, item costs $103, buy 1 and have $5 left over
= Extra $5 will buy 5/103 units. Real rate of return is 5/103.

Real Return
e Real rate of return in example is
5/103 = (108 — 103) /103 = 108/103 — 1 = 1.08/1.03 — 1
e Real rate of return in general is

1 + T'nominal
1 + inflation

—1

T'real —

e Also called "return in constant dollars"”

Retirement Planning and Inflation

e Do everything with expected real rate of return
e [f savings are expected to grow, use the real growth rate

1 + Gnominal

—1
1 + inflation

Jreal —

e Then retirement spending will be in today's dollars.

e https://learn-investments.rice-business.org/borrowing-saving/inflation

https://learn-investments.rice-business.org/borrowing-saving/inflation

SIMULATION

Independent random normals

e Annual returns are approximately normally distributed.
e And are approximately independent from one year to the next.

e Simulate random normals with np.random.normal.

mean = 0.1

stdev = 0.15

np.random.seed(9)
np.random.normal(loc=mean, scale=stdev)

0.36460785189514955

SIMULATE MULTIPLE YEARS

n = 10
np.random.seed(9)

rets = np.random.normal(

loc=mean,
scale=stdev,
size=n

rets

array([0.36460785, ©0.16002358, 0.2468107 , 0.43613398, ©0.3801337

J

8])

-0.04659168, 0.24251326, ©0.07729642, 0©0.08451717, ©.1615897

Compound Returns

e How much would $1 grow to?
= Answer is np.prod(1+rets)
e What is the total return over the n years?

= Answer is np.prod(1+rets) - 1

print(f"$1 would grow to ${np.prod(l+rets): .3f}")
print(f"the total return is {np.prod(l+rets)-1: .1%}")

$1 would grow to $ 6.289
the total return is ©528.9%

SIMULATE MULTIPLE YEARS MULTIPLE TIMES

num_prds 10
num_sims 5
np.random.seed(9)

rets = np.random.normal(
loc=mean,
scale=stdev,
size=(num_prds, num_sims)

)

np.prod((l+rets), axis=0)

array([1.30568504, 4.01010011, 2.92173927, 2.62512839, 4.17660966])

DISTRIBUTION OF THE COMPOUND RETURN

e Compounding produces positive skewness
e So, the median is below the mean

e The difference between median and mean is larger when there is more risk.

num_sims = 1000
np.random.seed(0)

rets = np.random.normal(
loc=mean,
scale=stdev,
size=(num_prds, num_sims)
)

compound_rets = np.prod((l+rets), axis=0) - 1

import pandas as pd
pd.Series(compound rets).describe()

count 1000 .000000

mean 1.525291
std 1.123597
min -0.464922
25% 0.737312
50% 1.330335
75% 2.061266
max 7.906556

dtype: floate4

In [267]: import plotly.express as px

px.histogram(compound_rets)

variable
B o

count

value

RISK IN THE LONG RUN

e Law of large numbers does not eliminate risk (uncertainty) in the long run
e Law of large numbers applies to average of gambles, not the sum
= So it applies to the average return, not the cumulative return
= Theorem: a random walk walks everywhere!
e However, if the game is in your favor (the house at a casino or the stock market)

and you play a long time, it is very unlikely you will end with less than you start.

https://learn-investments.rice-business.org/risk/long-run

https://learn-investments.rice-business.org/risk/long-run

MOMENTS OF
DISTRIBUTIONS

e Non-central moments
= first = mean = E[z]
» second = E[z?]
= third = E[z’]
= fourth = E[x?]
e Central moments
" T = mean
= second = variance = E[(z — Z)?
= third = E[(z — Z)3]
= fourth = E[(z — Z)*]

e Standardized moments
m g = stdev = \/m
= third = skewness = E[(z — z)3] /03
= fourth = kurtosis = E[(z — z)%]/o*

EXAMPLE 1. NORMAL

central moments

np.random.seed(0)
X = np.random.normal(size=100000)
mean = np.mean(x)
variance = np.mean(
(x-mean)**2
)
third = np.mean(
(x-mean)**3
)
fourth = np.mean(
(x-mean)**4
)
print(f"mean={mean:.2f}, variance={variance:.2f}, third={third:.2f}, fourth={

mean=0.00, variance=0.99, third=-0.01, fourth=3.00

standardized central moments
stdev = np.sqrt(variance)

skewness

third / stdev**3

kurtosis

fourth / stdev**4
print(f"stdev={stdev:.2f}, skewness={skewness:.2f}, kurtosis={kurtosis:.2f}")

stdev=1.00, skewness=-0.01, kurtosis=3.03

Theorem

For any normal distribution, skewness = 0 and kurtosis = 3.

Adjusted Kurtosis and Leptokurtosis

e The common definition of kurtosis is

E[(z — mean)?]

stdev®

-3

e With this definition, the kurtosis of a normal distribution is 0.

e Positive kurtosis means unadjusted kurtosis > 3. This is often called "excess
kurtosis."

e Distributions with positive kurtosis are called leptokurtic. Or fat tailed.

EXAMPLE 2: LOGNORMAL

central moments

y = np.exp(x)

mean = np.mean(y)

variance = np.mean(
(y-mean) **2

)

third = np.mean(
(y-mean)**3

)

fourth = np.mean(
(y-mean)**4

)

print(f"mean={mean:.2f}, variance={variance:.2f}, third={third:.2f}, fourth={

mean=1.65, variance=4.60, third=55.13, fourth=1429.58

standardized central moments
stdev = np.sqrt(variance)

skewness

third / stdev**3

kurtosis

fourth / stdev**4
print(f"stdev={stdev:.2f}, skewness={skewness:.2f}, kurtosis={kurtosis:.2f}")

stdev=2.15, skewness=5.58, kurtosis=67.44

In [272]:

px.histogram(y)

count

3500

3000

2500

2000

1500

20

a0

50

60

variable
B o

EXAMPLE 3: MIXTURE

np.

x1

random.seed(9)

= np.random.normal(
loc=0.1,
scale=0.1,
size=100000

= np.random.normal(
loc=0.1,
scale=0.5,
size=100000

np.random.randint(2, size=100000)
np.where(z, x1, x2)

In [274]: px.histogram(y)

2500

2000

1500

count

1000

500

-1.5

value

variable
B o

central moments

mean = np.mean(y)

variance = np.mean(
(y-mean) **2

)

third = np.mean(
(y-mean)**3

)

fourth = np.mean(
(y-mean) **4

)

print(f"mean={mean:.2f}, variance={variance:.2f}, third={third:.2f}, fourth={

mean=0.10, variance=0.13, third=0.00, fourth=0.09

standardized central moments
stdev = np.sqrt(variance)

skewness

third / stdev**3

kurtosis

fourth / stdev**4
print(f"stdev={stdev:.2f}, skewness={skewness:.2f}, kurtosis={kurtosis:.2f}")

stdev=0.36, skewness=0.01, kurtosis=5.56

