
Simulation, Moments, and
Real Returns
BUSI 721: Data-Driven Finance I
Kerry Back, Rice University

Outline
Retirement planning

Review
With growing savings

Inflation and real returns
Simulation

Risk in the long run
Skewness and kurtosis

RETIREMENT PLANNING

REVIEW

Main Time-Value-of-Money Formulas
PV = ⇔ FV = PV × (1 + r)n

FV

(1 + r)n

B0 = P [+ + ⋯ +]1

1 + r

1

(1 + r)2

1

(1 + r)n

Problem to Solve
Hope to spend dollars per year during years of retirement
Save dollars per year during years of working
Expect to earn per year on investments.
How large does need to be?
Timeline:

years save
years spend .

y n

x m

r

x

1, … , m → x

m + 1, … , m + n → y

Match PVs
Compute PV of spending at year (standard annuity formula)
Discount to present - divide by
Match PV of savings:

m

(1 + r)m

x × [+ ⋯ +]1

1 + r

1

(1 + r)m

= y × [+ ⋯ +]1

(1 + r)m

1

1 + r

1

(1 + r)n

Match FVs
Or match the values at the end of year m: account balance = retirement target
Multiply both PVs by to get these FVs:(1 + r)m

x × [(1 + r)m−1 + ⋯ + 1]

= y × [+ ⋯ +]1

1 + r

1

(1 + r)n

EXAMPLE

In [257]: import numpy_financial as npf

spending = 100000
num_spending_years = 25
num_saving_years = 30
r = 0.06

pv_spending_at_retirement = npf.pv(
 rate=r,
 nper=num_spending_years,
 pmt=-spending
)

print(f"We need to have ${pv_spending_at_retirement:,.0f} at retirement.")

We need to have $1,278,336 at retirement.

MATCH PVs

In [258]: savings = - npf.pmt(
 pv=pv_spending_at_retirement / (1+r)**num_saving_years,
 rate=r,
 fv=0,
 nper=num_saving_years
)

print(f"We need to save ${savings:,.0f} each year.")

We need to save $16,170 each year.

MATCH FVs

In [259]: savings = - npf.pmt(
 pv=0,
 rate=r,
 fv=pv_spending_at_retirement,
 nper=num_saving_years
)

print(f"We need to save ${savings:,.0f} each year.")

We need to save $16,170 each year.

GROWING SAVINGS

Save first year, second year, third year, etc.
E.g., , , second year is , third year is , etc.
FV of savings:

Solve for :

x x(1 + g) x(1 + g)2

x = 20, 000 g = 0.05 21, 000 22, 050

x(1 + r)m−1 + x(1 + g)(1 + r)m−2 + ⋯ + x(1 + g)m−1

= x[(1 + r)m−1 + (1 + g)(1 + r)m−2 + ⋯ + (1 + g)m−1]

x

x = target/[(1 + r)m−1 + (1 + g)(1 + r)m−2 + ⋯ + (1 + g)m−1]

MATCH FVs

In [260]: import numpy as np

g = 0.03
m = num_saving_years

factors = (1+g) ** np.arange(m)
factors *= (1+r) ** np.arange(m-1, -1, -1)
x = pv_spending_at_retirement / np.sum(factors)

print(f"We need to save ${x:,.0f} each year.")

We need to save $11,564 each year.

REAL RETURNS

Inflation rate is % change in Consumer Price Index (CPI)
Real rate of return is inflation-adjusted rate
Example:

Item costs today
Can earn on investments
Inflation is
Instead of buying today, you could invest .
Have in one year, item costs , buy and have left over
Extra will buy units. Real rate of return is .

$100

8%

3%

$100

$108 $103 1 $5

$5 5/103 5/103

Real Return
Real rate of return in example is

Real rate of return in general is

Also called "return in constant dollars"

5/103 = (108 − 103)/103 = 108/103 − 1 = 1.08/1.03 − 1

rreal = − 1
1 + rnominal

1 + inflation

Retirement Planning and Inflation
Do everything with expected real rate of return
If savings are expected to grow, use the real growth rate

Then retirement spending will be in today's dollars.

greal = − 1
1 + gnominal

1 + inflation

https://learn-investments.rice-business.org/borrowing-saving/inflation

https://learn-investments.rice-business.org/borrowing-saving/inflation

SIMULATION

Independent random normals
Annual returns are approximately normally distributed.
And are approximately independent from one year to the next.
Simulate random normals with np.random.normal.

In [261]: mean = 0.1
stdev = 0.15
np.random.seed(0)
np.random.normal(loc=mean, scale=stdev)

Out[261]: 0.36460785189514955

SIMULATE MULTIPLE YEARS

In [262]: n = 10
np.random.seed(0)

rets = np.random.normal(
 loc=mean,
 scale=stdev,
 size=n
)
rets

Out[262]: array([0.36460785, 0.16002358, 0.2468107 , 0.43613398, 0.3801337
,
 -0.04659168, 0.24251326, 0.07729642, 0.08451717, 0.1615897
8])

Compound Returns
How much would $1 grow to?

Answer is np.prod(1+rets)
What is the total return over the years?

Answer is np.prod(1+rets) - 1
n

In [263]: print(f"$1 would grow to ${np.prod(1+rets): .3f}")
print(f"the total return is {np.prod(1+rets)-1: .1%}")

$1 would grow to $ 6.289
the total return is 528.9%

SIMULATE MULTIPLE YEARS MULTIPLE TIMES

In [264]: num_prds = 10
num_sims = 5
np.random.seed(0)

rets = np.random.normal(
 loc=mean,
 scale=stdev,
 size=(num_prds, num_sims)
)
np.prod((1+rets), axis=0)

Out[264]: array([1.30568504, 4.01010011, 2.92173927, 2.62512839, 4.17660966])

DISTRIBUTION OF THE COMPOUND RETURN

Compounding produces positive skewness
So, the median is below the mean
The difference between median and mean is larger when there is more risk.

In [265]: num_sims = 1000
np.random.seed(0)

rets = np.random.normal(
 loc=mean,
 scale=stdev,
 size=(num_prds, num_sims)
)
compound_rets = np.prod((1+rets), axis=0) - 1

import pandas as pd
pd.Series(compound_rets).describe()

Out[265]: count 1000.000000
mean 1.525291
std 1.123597
min -0.464922
25% 0.737312
50% 1.330335
75% 2.061266
max 7.906556
dtype: float64

In [267]: import plotly.express as px

px.histogram(compound_rets)

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90 variable
0

value

co
un

t

RISK IN THE LONG RUN

Law of large numbers does not eliminate risk (uncertainty) in the long run
Law of large numbers applies to average of gambles, not the sum

So it applies to the average return, not the cumulative return
Theorem: a random walk walks everywhere!

However, if the game is in your favor (the house at a casino or the stock market)
and you play a long time, it is very unlikely you will end with less than you start.

https://learn-investments.rice-business.org/risk/long-run

https://learn-investments.rice-business.org/risk/long-run

MOMENTS OF
DISTRIBUTIONS

Non-central moments
first = mean =
second =
third =
fourth =

Central moments
 = mean

second = variance =
third =
fourth =

E[x]

E[x2]

E[x3]

E[x4]

x̄

E[(x − x̄)2]

E[(x − x̄)3]

E[(x − x̄)4]

Standardized moments
 = stdev =

third = skewness =
fourth = kurtosis =

σ √variance

E[(x − x̄)3]/σ
3

E[(x − x̄)4]/σ
4

EXAMPLE 1: NORMAL

In [268]: # central moments

np.random.seed(0)
x = np.random.normal(size=100000)
mean = np.mean(x)
variance = np.mean(
 (x-mean)**2
)
third = np.mean(
 (x-mean)**3
)
fourth = np.mean(
 (x-mean)**4
)
print(f"mean={mean:.2f}, variance={variance:.2f}, third={third:.2f}, fourth={f

mean=0.00, variance=0.99, third=-0.01, fourth=3.00

In [269]: # standardized central moments

stdev = np.sqrt(variance)

skewness = third / stdev**3

kurtosis = fourth / stdev**4

print(f"stdev={stdev:.2f}, skewness={skewness:.2f}, kurtosis={kurtosis:.2f}")

stdev=1.00, skewness=-0.01, kurtosis=3.03

Theorem
For any normal distribution, skewness = 0 and kurtosis = 3.

Adjusted Kurtosis and Leptokurtosis
The common definition of kurtosis is

With this definition, the kurtosis of a normal distribution is 0.
Positive kurtosis means unadjusted kurtosis > 3. This is often called "excess
kurtosis."
Distributions with positive kurtosis are called leptokurtic. Or fat tailed.

− 3
E[(x − mean)4]

stdev3

EXAMPLE 2: LOGNORMAL

In [270]: # central moments

y = np.exp(x)
mean = np.mean(y)
variance = np.mean(
 (y-mean)**2
)
third = np.mean(
 (y-mean)**3
)
fourth = np.mean(
 (y-mean)**4
)
print(f"mean={mean:.2f}, variance={variance:.2f}, third={third:.2f}, fourth={f

mean=1.65, variance=4.60, third=55.13, fourth=1429.58

In [271]: # standardized central moments

stdev = np.sqrt(variance)

skewness = third / stdev**3

kurtosis = fourth / stdev**4

print(f"stdev={stdev:.2f}, skewness={skewness:.2f}, kurtosis={kurtosis:.2f}")

stdev=2.15, skewness=5.58, kurtosis=67.44

In [272]: px.histogram(y)

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500
variable

0

value

co
un

t

EXAMPLE 3: MIXTURE

In [273]: np.random.seed(0)
x1 = np.random.normal(
 loc=0.1,
 scale=0.1,
 size=100000
)
x2 = np.random.normal(
 loc=0.1,
 scale=0.5,
 size=100000
)
z = np.random.randint(2, size=100000)
y = np.where(z, x1, x2)

In [274]: px.histogram(y)

−1.5 −1 −0.5 0 0.5 1 1.5 2
0

500

1000

1500

2000

2500 variable
0

value

co
un

t

In [275]: # central moments

mean = np.mean(y)
variance = np.mean(
 (y-mean)**2
)
third = np.mean(
 (y-mean)**3
)
fourth = np.mean(
 (y-mean)**4
)
print(f"mean={mean:.2f}, variance={variance:.2f}, third={third:.2f}, fourth={f

mean=0.10, variance=0.13, third=0.00, fourth=0.09

In [276]: # standardized central moments

stdev = np.sqrt(variance)

skewness = third / stdev**3

kurtosis = fourth / stdev**4

print(f"stdev={stdev:.2f}, skewness={skewness:.2f}, kurtosis={kurtosis:.2f}")

stdev=0.36, skewness=0.01, kurtosis=5.56

