Funds and Returns

BUSI 721: Data-Driven Finance I

Kerry Back, Rice University

Funds

Some U.S. stock indexes

- Dow Jones $=30$ stocks
- S\&P 100 ~ 50\% of U.S. stock market capitalization
- S\&P 500 ~ 80\% of U.S. stock market capitalization
- Russell 1000
- Russell 3000
- Russell 2000 = Russell 3000 excluding Russell 1000, small-cap index
- Wilshire 5000

How do stock indexes work?

- \% change in index is \% increase/decrease in total value of companies in the index (except for Dow)
- \% change in index does not include dividend return

Mutual Funds

- Owned by the investors (mutual), managed by the sponsor
- Easy way to get diversification
- Can also perhaps benefit from professional active management
- Can usually invest directly with no need for a brokerage account
- Over 7,000 U.S. mutual funds \sim number of U.S. stocks
- Mutual funds for stocks, bonds, international stocks, real estate, ...

Net Asset Value

- NAV (net asset value per share) is calculated daily after close of trading.
- Equals value of portfolio less any expenses not yet paid divided by number of shares outstanding
- Invest money \rightarrow get shares in fund at next end-of-day NAV
- Withdraw money \rightarrow sell shares at next end-of-day NAV

Example

- Invest 10,000 Thursday end-of-day NAV $=250$, get 40 shares
- \# of shares can be fractional
- Fund \uparrow, withdraw 6,000, next end-of-day NAV $=300$
- $6,000 / 300=20$ shares that are redeemed
- Still have 20 shares, worth $20 \times 300=6,000$

Active and passive funds

- Passive funds track an index. They do not try to "beat the market." They have low expenses.
- Vanguard was the original and largest provider of index mutual funds: Vanguard 500, Vanguard Total Market, ...
- Active funds try to beat the market or their market sector by choosing the best stocks. They have higher expenses.
- There is some evidence that active fund managers can beat the market before payment of fees.
- But there is little evidence of extra returns to investors, after payment of managers' fees.
- There is also little evidence of repeat performance, except that the worst funds after fees tend to remain the worst.

Other types of funds

- Hedge funds, private equity funds, venture capital funds, funds of funds
- Less regulated
- Open only to qualified investors (minimum net worth or income)
- Higher fees, minimum investments, sometimes lock-ups

Exchange Traded Funds (ETFs)

- ETFs were invented in 1990. Now ~ 3,000 U.S. ETFs.
- ETFs are listed on stock exchanges and trade like stocks. You buy/sell them through your broker.
- Another easy way to get diversification. And lower fees than mutual funds.
- There are ETFs for stocks, bonds, international stocks, real estate, currencies, commodities
- ETFs calculate NAVs daily, but you do not buy/sell at the NAV. You buy/sell at the price determined by the market.

How do ETFs work?

- ETFs are not open to new cash investments.
- Neither can anyone withdraw cash from them.
- They are open to exchanges with authorized participants (APs).
- APs deliver baskets of assets and receive ETF shares when ETF market price is higher than NAV.
- APs deliver shares and receive baskets of assets when ETF market price is lower than NAV.
- This activity moves the ETF market price towards NAV.

Futures based ETFs

- Commodity ETFs generally hold futures contracts on the commodity instead of the physical commodity.
- An example is USO (U.S. Oil). A counter-example is GLD.
- There are also ETFs that take positions in stock index futures to deliver
- multiples (2-to-1 or 3-to-1) of the stock index return (levered ETFs)
- the negative of the stock index return (inverse ETFs) or multiples of the negative (levered inverse ETFs)

Some example of ETFs

- SPY = S\&P 500
- IWM = Russell 2000
- IEF = Treasury bonds
- LQD = corporate bonds
- UUP = short foreign currencies (bet on dollar)
- QUAL = "quality stocks"
- MTUM = high momentum stocks
- etfdf.com/screener/

Returns

Basic definition

- Return usually means rate of return = percent gain = (price + dividends - purchase price) / purchase price
- Often work with close-to-close returns = (closing price + dividend if any - prior day closing price) / prior day closing price
- Letting $r_{i}=$ return on day i, return over longer period is

$$
\left(1+r_{1}\right)\left(1+r_{2}\right)+\cdots\left(1+r_{n}\right)-1
$$

- For an account with multiples deposits and withdrawals, best definition of return is IRR

Dividend example

- Chevron's 2021 Q2 dividend
- Nasdaq's statement: Chevron Corporation (CVX) will begin trading ex-dividend on August 18, 2021. A cash dividend payment of $\$ 1.34$ per share is scheduled to be paid on September 10, 2021. Shareholders who purchased CVX prior to the exdividend date are eligible for the cash dividend payment.
- Three dates:
- August 18: (begins trading ex-dividend)
- August 19: (shareholders of record will receive the dividend)
- September 10: (dividend is paid)
- Aug 18 = ex-dividend date means must purchase on Aug 17 or before to be shareholder of record on Aug 19 (T+2 settlement)

Close-to-close returns

- Put dividend on the ex-dividend date Aug 18
- Return from close Aug 17 to close Aug 18 is $\left(P_{\text {Aug18 }}+1.34\right) / P_{\text {Aug17 }}$

Stock splits

- If a company does an n-for- 1 stock split, then each shareholder gets n new shares for each of her existing shares. Shares are worth $1 / n$ as much.
- Companies traditionally split their stocks to get the price in a more affordable trading range.
- It was customary to trade in round lots (100 shares)
- Odd lots are now common. Can even trade fractional shares.
- Data providers routinely adjust past prices for splits (e.g., cut all past prices in half when a company does a 2 -for-1 split).

Dividend and split adjusted prices

- Yahoo and some other providers adjust past prices whenever a dividend is paid (in addition to split adjustments).
- Yahoo's Aug 17 adjusted price for CVX was

$$
P_{\text {Aug17, adj }}=P_{\text {Aug17 }}-1.34
$$

- Percent change in adjusted prices (no adjustment for Aug 18) is

$$
\frac{P_{\mathrm{Aug} 18}-P_{\mathrm{Aug} 17, \text { adj }}}{P_{\mathrm{Aug} 17, \text { adj }}}=\frac{P_{\mathrm{Aug} 18}+1.34-P_{\mathrm{Aug} 17}}{P_{\mathrm{Aug} 17}-1.34} \approx \frac{P_{\mathrm{Aug} 18}+1.34-P_{\mathrm{Aug} 17}}{P_{\mathrm{Aug} 17}}
$$

Prior prices are adjusted by the same ratio, preserving \% changes as they were:

$$
\begin{aligned}
& P_{\text {Aug17, adj }}=\frac{P_{\text {Aug17 }}-1.34}{P_{\text {Aug17 }}} \times P_{\text {Aug17 }} \\
& P_{\text {Aug16, adj }}=\frac{P_{\text {Aug17 }}-1.34}{P_{\text {Aug17 }}} \times P_{\text {Aug16 }} \\
& P_{\text {Aug15, adj }}=\frac{P_{\text {Aug17 }}-1.34}{P_{\text {Aug17 }}} \times P_{\text {Aug15 }}
\end{aligned}
$$

etc.

Data

Daily Returns

```
In [2]: import yfinance as yf
ticker = 'CVX'
price = yf.download(ticker, start="1970-01-01")["Adj Close"]
ret = price.pct_change().dropna()
ret.name = "return"
ret.describe()
[*********************100%%***********************] 1 of 1 completed
Out[2]: count 13581.000000
    mean 0.000567
    std 0.016794
    min -0.221248
    25% -0.008281
    50% 0.000000
    75% 0.009218
    max 0.227407
    Name: return, dtype: float64
```

Time Series

In [3]: ret.plot()
Out[3]: <AxesSubplot: xlabel='Date'>

In [4]: (1+ret).cumprod().plot()
Out [4]: <AxesSubplot: xlabel='Date'>

In [5]: (1+ret).cumprod().plot(logy=True)
Out[5]: <AxesSubplot: xlabel='Date'>

Distribution

In [6]: ret.plot(kind="box")
Out[6]: <AxesSubplot: >

>

In [7]: ret.plot(kind="kde")
Out[7]: <AxesSubplot: ylabel='Density'>

Predictability

In [8]: import seaborn as sns
sns.regplot(x=ret.iloc[:-1], y=ret.iloc[1:], ci=None) plt.xlabel("Prior Day Return")
plt.ylabel("Daily Return")
plt.show()

Annual Returns

```
In [9]: price_annual = price.resample("Y").last()
ret_annual = price_annual.pct_change().dropna()
ret_annual.name = "annual return"
ret_annual.describe()
Out[9]: \begin{tabular}{llr} 
count & 53.000000 \\
& mean & 0.137076 \\
std & 0.233928 \\
min & -0.316028 \\
\(25 \%\) & -0.048960 \\
& \(50 \%\) & 0.115426 \\
& \(75 \%\) & 0.285149 \\
max & 0.764966
\end{tabular}
Name: annual return, dtype: float64
```

Time Series

In [10]: ret_annual.plot()
Out[10]: <AxesSubplot: xlabel='Date'>

In [11]: (1+ret_annual).cumprod().plot()
Out[11]: <AxesSubplot: xlabel='Date'>

In [12]: (1+ret_annual).cumprod().plot(logy=True)
Out[12]: <AxesSubplot: xlabel='Date'>

Distribution

In [13]: ret_annual.plot(kind="box")

Out[13]: <AxesSubplot: >

annual return

In [14]: ret_annual.plot(kind="kde")

Out[14]: <AxesSubplot: ylabel='Density'>

Predictability

In [15]: sns.regplot(
x=ret_annual.iloc[:-1], $y=r e t$ _annual.iloc[1:], ci=None
)
plt.xlabel("Prior Year Return")
plt.ylabel("Annual Return")
plt.show()

