Portfolios

BUSI 721: Data-Driven Finance I

Kerry Back, Rice University

Portfolio returns

- Two assets, prices p_1 and p_2
- Own shares x_1 and x_2
- Portfolio value is $p_1x_1 + p_2x_2$
- Fraction of value in asset i (**weight of asset**) is

$$w_i=rac{p_i x_i}{p_1 x_1+p_2 x_2}$$

- Future prices + dividends \Rightarrow returns r_1 and r_2
- Portfolio return is $w_1r_1 + w_2r_2$.

Example

- \$200 in asset 1 and \$300 in asset 2
- asset 1 goes up 10% and asset 2 goes up 5%
- asset 1 \mapsto \$220
- asset 2 \mapsto \$315
- portfolio value is \$535
- This is a 7% gain and

$$rac{2}{5} imes 0.1 + rac{3}{5} imes 0.05 = 0.07$$

Expected return

- Returns are random variables
- Expected = mean
- mean portfolio return $w_1r_1+w_2r_2$ is

 $w_1 imes \mathrm{mean} ext{ of } r_1+w_2 imes \mathrm{mean} ext{ of } r_2$

Variance

• The variance of the portfolio return is

$$w_1^2 \sigma_1^2 + w_2 \sigma_2^2 + 2 w_1 w_2
ho \sigma_1 \sigma_2$$

- where $\sigma_i = \text{std dev of } r_i$ and ρ is the correlation of r_1 and r_2 .
- Lower correlation implies lower portfolio risk!

$$\langle \rangle$$

Proof of variance formula

- Variance is expected squared deviation from mean
- Set $r_p = w_1 r_1 + w_2 r_2$ and use overbars to denote means
- Variance of r_p is

mean of
$$(r_p - \bar{r}_p)^2$$

• And

$$r_p - ar{r}_p = w_1 r_1 + w_2 r_2 - (w_1 ar{r}_1 + w_2 ar{r}_2)$$

• So

$$r_p - ar{r}_p = w_1(r_1 - ar{r}_1) + w_2(r_2 - ar{r}_2)$$

• To square this, use $(a+b)^2 = a^2 + b^2 + 2ab$

 $\langle \rangle$

• So portfolio variance is

$$egin{aligned} &w_1^2 imes ext{mean of } (r_1 - ar{r}_1)^2 \ &+ w_2^2 imes ext{mean of } (r_2 - ar{r}_2)^2 \ &+ 2 w_1 w_2 imes ext{mean of } (r_1 - ar{r}_1) (r_2 - ar{r}_2) \end{aligned}$$

<

>

• This is

$$w_1^2 \sigma_1^2 + w_2 \sigma_2^2 + 2 w_1 w_2
ho \sigma_1 \sigma_2$$

Example

<

>

In [2]: mu1, mu2 = 0.06, 0.1
sigma1, sigma2 = 0.2, 0.3
rho = 0.3
w1, w2 = 0.4, 0.6

```
In [3]: import numpy as np
```

```
mn = w1*mu1 + w2*mu2
var = w1**2*sigma1**2 + w2**2*sigma2**2 + 2*w1*w2*rho*sigma1*sigma2
print(f"mean portfolio return is {mn:.2%}")
print(f"std dev of portfolio return is {np.sqrt(var):.2%}")
```

mean portfolio return is 8.40%
std dev of portfolio return is 21.78%

Simulation


```
In [4]: cov = [
    [sigma1**2, rho*sigma1*sigma2],
    [rho*sigma1*sigma2, sigma2**2]
]
from scipy.stats import multivariate_normal as multinorm
rets = multinorm.rvs(
    mean=[mu1, mu2],
    cov=cov,
    size=1000000
)
rp = w1*rets[:,0] + w2*rets[:,1]
print(f"simulated mean is {np.mean(rp):.2%}")
print(f"simulated std dev is {np.std(rp):.2%}")
```

simulated mean is 8.39%
simulated std dev is 21.77%

Cash

- Adding cash (money market investment) to a portfolio has a simple effect on expected return and risk.
- Let asset 2 be cash. Its return has negligible risk. Call its return r_{mm} .
- Portfolio mean is $w_1 \mu_1 + w_2 r_{mm}$
- Portfolio variance is $w_1^2 \sigma_1^2$
- Portfolio std dev is $w_1\sigma_1$.

Margin loans

- You can have negative cash by borrowing from your broker.
- Example: put \$1,000 in an account, borrow \$200 and buy \$1,200 of a stock.
- Continue to call asset 2 cash.
- Your portfolio weights are $w_1 = 1.2$ and $w_2 = -0.2$.
- Your expected return is $1.2 imes \mu_1 0.2 imes r_{ml}$ where r_{ml} is the margin loan rate.
- Your std dev is $1.2\sigma_1$.

Short selling

- You can have a negative weight on a stock by selling short.
- To sell short, your broker borrows shares on your behalf and sells them.
- You eventually have to buy the shares back in the market and return them.
- Profit by selling high and buying low.
- Example: short sell 100 shares \$100 stock.
 - Stock falls to \$90 and you cover the short (buy and return shares).
 - Paid \$90 and sold at $100 \Rightarrow$ profit \$10 per share on 100 shares.

Long and short returns (simplified version)

- Assume we invest \$1,000, short sell \$400 of stock 2 and buy \$1,400 of stock 1.
- The weights are 1.4 in stock 1 and -0.4 in stock 2.
- Suppose stock 1 goes up 10% and stock 2 goes up 5%.
 - Stock 1 \rightarrow \$1,540.
 - Stock 2 position $\rightarrow -\$420$.
 - Portfolio value ightarrow \$1,120 = 12% return
 - $ullet w_1r_1+w_2r_2=1.4 imes 0.10-0.4 imes 0.05\ =0.12$

Long and short returns (practical version)

- Proceeds from short sales are retained as collateral
- Investor may get some interest on the proceeds while they are held (called short interest rebate)
- We can invest \$1,000, short sell \$400 of stock 2 and buy \$1,400 of stock 1 only if we take out a margin loan for \$400.
- Actual return in example is

1.4 imes 0.10-0.4 imes 0.05

 $-0.4 imes r_{ml} + 0.4 imes r_{sir} - 0.4 imes$ short borrowing fee

• where r_{sir} is the short interest rebate rate.

Enhanced index return example

- Invest \$1,000. Borrow \$1,000 on margin loan.
- Buy \$1,000 of SPY and buy \$1,000 of CVX.
- Short sell \$1,000 of COP.
- Return is SPY return + CVX return COP return minus margin loan/short interest rebate/short borrowing fee drag.
- If CVX beats COP enough, you will beat SPY.

More assets

- *n* stocks
- weights w_1,\ldots,w_n
- expected returns μ_1, \ldots, μ_n
- covariance matrix $\boldsymbol{\Sigma}$
 - diagonal elements of covariance matrix are variances
 - off-diagonal elements are correlation × std dev × std dev.

Portfolio risk

- Portfolio variance is $w'\Sigma w$
- Portfolio std dev is $\sqrt{w' \Sigma w}$

```
In [5]: # example

w = np.array([0.2, 0.2, 0.4])
sigma1, sigma2, sigma3 = 0.2, 0.3, 0.1
rho12, rho13, rho23 = 0.3, 0.5, 0.4

Cov = np.array([
    [sigma1**2, rho12*sigma1*sigma2, rho13*sigma1*sigma3],
    [rho12*sigma1*sigma2, sigma2**2, rho23*sigma2*sigma3],
    [rho13*sigma1*sigma3, rho23*sigma2*sigma3, sigma3**2]
])
stdev = np.sqrt(w @ cov @ w)
print(f"portfolio std dev is {stdev:.2%}")
```

portfolio std dev is 10.84%

Portfolio expected return

- If $w_i \ge 0$ and sum to 1, then portfolio mean is $w'\mu$.
- If $w_i \ge 0$ and sum to less than 1, then portfolio mean is

$$w'\mu + \left(1-\sum w_i
ight)r_{mm}$$

• If $w_i \ge 0$ and sum to more than 1, then portfolio mean is

$$w'\mu + \left(1-\sum w_i
ight)r_{ml}$$

• So we can say that if $w_i \geq 0$, then portfolio mean is

$$w'\mu + \left(1-\sum w_i
ight)r_f$$

- where $r_f = r_{mm}$ if cash > 0 and $r_m = r_{ml}$ if cash < 0.
- With short sales, portfolio mean is also

$$w'\mu + \left(1-\sum w_i
ight)r_f$$

• minus the drag from difference between margin loan and short interest rebate rates and minus short borrowing fees.

```
In [6]: # continuing prior example
```

```
rf = 0.04
mu1, mu2, mu3 = 0.1, 0.12, 0.08
mu = np.array([mu1, mu2, mu3])
port_mean = w @ mu + (1-np.sum(w))*rf
print(f"portfolio mean is {port_mean:.2%}")
```

portfolio mean is 8.40%

Estimating from historical returns

- Example:
 - SPY = S&P 500
 - IEF = Treasury bonds
 - GLD = gold
- Get adjusted closing prices from Yahoo
- Compute returns as percent changes

```
In [7]: import yfinance as yf
tickers = ["SPY", "IEF", "GLD"]
```

```
prices = [ SPY , IEF , GLD ]
prices = yf.download(tickers, start="1970-01-01")["Adj Close"]
rets = prices.pct_change().dropna()
rets.head(3)
```

Out[7]:		GLD	IEF	SPY
	Date			
	2004-11-19	0.009013	-0.005480	-0.011117
	2004-11-22	0.003796	0.000704	0.004769
	2004-11-23	-0.004449	-0.000938	0.001526

In [8]:	rets.corr()				
Out[8]:		GLD	IEF	SPY	
	GLD	1.000000	0.208371	0.049425	
	IEF	0.208371	1.000000	-0.320228	
	SPY	0.049425	-0.320228	1.000000	

Annualizing

- May be easier to interpret means and std devs when expressed in annual terms
- Annualize daily means by multiplying by 252 (# of trading days in a year)
- Annualize daily variances by multiplying by 252
- Annualize daily std devs by multiplying by square root of 252

In [9]: print(f"annualized means are \n{252*rets.mean()}") print(f"\nannualized std devs are \n{np.sqrt(252)*rets.std()}")

> annualized means are GLD 0.090313 IEF 0.031442 SPY 0.106698 dtype: float64 annualized std devs are GLD 0.176744 IEF 0.068225 SPY 0.193171

dtype: float64

Portfolio returns

<

>

```
In [10]: w = np.array([0.2, 0.3, 0.5])
mean = w @ rets.mean()
```

```
var = w @ rets.cov() @ w
```

```
stdev = np.sqrt(var)
```

```
print(f"annualized mean portfolio return is {252*mean:.2%}")
print(f"annualized std dev is {np.sqrt(252)*stdev:.2%}")
```

```
annualized mean portfolio return is 8.08% annualized std dev is 10.18%
```