
Portfolio Optimization
BUSI 721: Data-Driven Finance I
Kerry Back, Rice University

Outline
1. Review of portfolio expected returns and risks
2. Define mean-variance efficient and global minimum variance portfolios
3. Example of quadratic programming with cvxopt
4. SPY, IEF, and GLD returns
5. GMV portfolio of SPY, IEF, and GLD
6. Mean-variance efficient portfolios of SPY, IEF, and GLD
7. Include cash with SPY, IEF, and GLD
8. Sharpe ratios and the tangency portfolio

Review: Portfolio expected return
With risky assets,

where money market rate if and
 margin loan rate if and

we are ignoring interest drag and short borrowing fee if any of the are negative.

n

n

∑
i=1

wiμi + (1 −

n

∑
i=1

wi) rf

rf = ∑wi < 1

rf = ∑wi > 1

wi

Review: Reg T
Initial margin requirement: when positions are put on,

Afterwards, brokers impose maintenance margin requirements.
Example: invest 1,000, borrow 1,000, buy 20 shares of 100 stock

Stock price falls to 75.
Now have 1,500 of stock.
Portfolio value is 1,500 - 1,000 = 500. Weight on stock is 1,500 / 500 = 3.
Maybe get margin call.

∑ |wi| ≤ 2

$

∑wi = 2

Review: Portfolio variance
Two assets:

Three assets:

Any number of assets:

w
2

1
σ

2

1
+ w

2

2
σ

2

2
+ 2w1w2ρσ1σ2

w
2

1
σ

2

1
+ w

2

2
σ

2

2
+ w2

3
σ2

3

+2w1w2ρ12σ1σ2 + 2w1w3ρ13σ1σ3 + 2w2w3ρ23σ2σ3

w
′
Σw

Matrix multiplication

(a b

c d
)(

x

y
) = (

ax+ by

cx+ dy
)

(g h)(a b

c d
) = (ga+ hc gb+ hd)

(w1 w2)(
σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

)(w1

w2

) = (w1 w2)(
σ2
1w1 + ρσ1σ2w2

ρσ1σ2w1 + σ2w2

)

= σ2
1w

2
1 + ρσ2σ2w1w2 + ρσ2σ2w1w2 + σ2w

2
2

2. Mean-Variance Frontier and GMV Portfolio

Mean-Variance Frontier
Mean-variance frontier is the set of portfolios that have the least risk among all
portfolios that have their expected return
Minimum risk problem: minimize variance subject to constraints:

achieve a target expected return

possibly or Reg T
We can vary the target expected return and trace out the mean-variance frontier
Some points on the frontier may be inefficient (meaning you can do better on both
risk and expected return) because the target expected return is too low.

∑wi = 1

wi ≥ 0

Global minimum variance portfolio
Solve the minimization problem without a target expected return
This portfolio (GMV portfolio) has the least risk among all portfolios
Frontier portfolios are efficient (meaning you can't do better on both risk and
expected return) if and only if the target expected return expected return of
GMV portfolio.

≥

3. Quadratic programming

Finding efficient portfolios and finding the GMV portfolio are examples of
quadratic programming
Minimize or maximize a quadratic function (squares and products and linear terms)

Subject to linear inequality constraints
And subject to linear equality constraints

Quadratic Programming Example

minimize

subject to

x
2

1
+ x

2

2
− 2x1 − x2

x1 ≥ 0

x2 ≥ 0

x1 + x2 = 1

Notation of cvxopt
minimize

subject to

and

x′Px + q ′x
1

2

Gx ≤ h

Ax = b

Our example

P = (2 0

0 2
) ⇒ x′Px = x2

1 + x2
2

1

2

q = (−2

−1
) ⇒ q ′x = −2x1 − x2

G = (−1 0

0 −1
) ⇒ Gx = (−x1

−x2

)

h = (0

0
)

A = (1 1) ⇒ Ax = x1 + x2

b = (1)

Define arrays

In [3]: P = np.array(
 [
 [2., 0.],
 [0., 2.]
]
)
q = np.array([-2., -1.]).reshape(2, 1)
G = np.array(
 [
 [-1., 0.],
 [0., -1.]
]
)
h = np.array([0., 0.]).reshape(2, 1)
A = np.array([1., 1.]).reshape(1, 2)
b = np.array([1.]).reshape(1, 1)

Solve

In [4]: from cvxopt import matrix
from cvxopt.solvers import qp

sol = qp(
 P=matrix(P),
 q=matrix(q),
 G=matrix(G),
 h=matrix(h),
 A=matrix(A),
 b=matrix(b)
)
np.array(sol["x"])

 pcost dcost gap pres dres
 0: -1.1111e+00 -2.2222e+00 1e+00 1e-16 1e+00
 1: -1.1231e+00 -1.1680e+00 4e-02 1e-16 4e-02
 2: -1.1250e+00 -1.1261e+00 1e-03 2e-16 3e-04
 3: -1.1250e+00 -1.1250e+00 1e-05 6e-17 3e-06
 4: -1.1250e+00 -1.1250e+00 1e-07 3e-16 3e-08
Optimal solution found.

Out[4]: array([[0.7499999],
 [0.2500001]])

4. Stock, Bond, and Gold ETFs

SPY, IEF, and GLD adjusted closing prices from Yahoo
Downsample to monthly
Percent changes are monthly returns
Compute historical means and covariance matrix

GLD IEF SPY

Date

2004-12-31 -0.029255 0.011674 0.030121

2005-01-31 -0.036073 0.008710 -0.022421

2005-02-28 0.031028 -0.013683 0.020904

In [5]: import yfinance as yf

tickers = ["SPY", "IEF", "GLD"]
prices = yf.download(tickers, start="1970-01-01")["Adj Close"]
prices = prices.resample("M").last()
rets = prices.pct_change().dropna()
rets.head(3)

[*********************100%%**********************] 3 of 3 completed

Out[5]:

Means, risks and correlations

In [6]: 12 * rets.mean()

Out[6]: GLD 0.087096
IEF 0.031683
SPY 0.100341
dtype: float64

In [7]: np.sqrt(12) * rets.std()

Out[7]: GLD 0.169435
IEF 0.064872
SPY 0.150749
dtype: float64

GLD IEF SPY

GLD 1.000000 0.317975 0.084318

IEF 0.317975 1.000000 -0.121379

SPY 0.084318 -0.121379 1.000000

In [8]: rets.corr()

Out[8]:

In [9]: mu = rets.mean().to_numpy()
Sigma = rets.cov().to_numpy()

5. GMV Portfolio of Stocks, Bonds, and Gold

GMV minimization problem
minimize

subject to

where is a column vector of ones.

w
′
Σw

1

2

∑wi = 1 ⇔ ι
′
w = 1

ι

cvxopt formulation
P = Σ

q = 0

A = (1 1 1)

b = (1)

Define arrays

In [10]: P = Sigma
q = np.zeros((3, 1))
A = np.ones((1, 3))
b = np.ones((1, 1))

Compute the GMV portfolio

In [11]: sol = qp(
 P=matrix(P),
 q=matrix(q),
 A=matrix(A),
 b=matrix(b)
)

import pandas as pd
gmv = pd.Series(sol["x"], index=rets.columns)
gmv

Out[11]: GLD -0.001301
IEF 0.817025
SPY 0.184276
dtype: float64

Risk and expected return of GMV portfolio

In [12]: w = gmv.to_numpy()
print(f"\nGMV annualized std dev is {np.sqrt(12*w@Sigma@w):.2%}")
print(f"GMV annualized mean is {12*mu@w: .2%}")

print(f"\nIEF annualized std dev is {np.sqrt(12)*rets.IEF.std():.2%}")
print(f"IEF annualized mean is {12*rets.IEF.mean():.2%}")

GMV annualized std dev is 5.67%
GMV annualized mean is 4.43%

IEF annualized std dev is 6.49%
IEF annualized mean is 3.17%

6. Efficient portfolios of SPY, IEF, and GLD

Minimize risk with target expected return
minimize

subject to

where target expected return and is a column vector of ones.

w
′
Σw

1

2

μ
′
w = r

ι
′
w = 1

r = ι

cvxopt formulation
P = Σ

q = 0

A = (μ1 μ2 μ3

1 1 1
)

b = (r

1
)

Define arrays

In [14]: # example target monthly expected return
r = 0.06/12

P = Sigma
q = np.zeros((3, 1))
A = np.array(
 [
 mu,
 [1., 1., 1.]
]
)
b = np.array([r, 1]).reshape(2, 1)

Compute the efficient portfolio

In [15]: sol = qp(
 P=matrix(P),
 q=matrix(q),
 A=matrix(A),
 b=matrix(b)
)
efficient = pd.Series(sol["x"], index=rets.columns)
efficient

Out[15]: GLD 0.115466
IEF 0.565289
SPY 0.319245
dtype: float64

7. Include cash with SPY, IEF, and GLD

Target expected return with cash
Expected return is

Equals target expected return if and only if

So,

μ′w + (1 − ι′w)rf = rf + (μ − rfι′)w

r

(μ − rfι)′w = r − rf

A = (μ1 − rf μ2 − rf μ3 − rf)

b = (r − rf)

Define arrays

In [17]: # example monthly interest rate
rf = 0.03/12

example target expected return
r = 0.06/12

P = Sigma
q = np.zeros((3, 1))
A = (mu - rf*np.ones(3)).reshape(1, 3)
b = np.array([r-rf]).reshape(1, 1)

Compute the efficient portfolio

In [18]: sol = qp(
 P=matrix(P),
 q=matrix(q),
 A=matrix(A),
 b=matrix(b)
)
efficient_with_cash = pd.Series(sol["x"], index=rets.columns)
efficient_with_cash

Out[18]: GLD 0.176189
IEF -0.027139
SPY 0.284129
dtype: float64

8. Sharpe Ratios and the Tangency Portfolio

Sharpe ratio
The Sharpe ratio is defined as

To annualize a monthly Sharpe ratio,
numerator should be multiplied by ,
denominator should be multiplied by
so ratio should be multiplied by

Expected Return − Risk-Free Rate

Standard Deviation

12

√12

√12

Sharpe ratios of SPY, IEF, and GLD

In [20]: sharpes = np.sqrt(12)*(rets.mean() - rf) / rets.std()
sharpe_efficient = np.sqrt(12)*(r - rf) / np.sqrt(w@Sigma@w)

print(f"SPY = {sharpes.SPY:.2%}")
print(f"IEF = {sharpes.IEF:.2%}")
print(f"GLD = {sharpes.GLD:.2%}")
print(f"Efficient portfolio with cash = {sharpe_efficient:.2%}")

SPY = 46.66%
IEF = 2.59%
GLD = 33.70%
Efficient portfolio with cash = 55.43%

Geometry of Sharpe ratios
Sharpe ratio is slope of line connecting (std dev=0, mean=rf) with the (std dev,
mean) of the asset or portfolio
Efficient portfolios with cash all have the same Sharpe ratio, so they all lie on the
same line
This is the maximum possible Sharpe ratio - the line is the furthest northwest in the
(std dev, mean) diagram.

Tangency portfolio
Tangency portfolio is an efficient portfolio with cash that does not use cash
It is efficient with or without cash
It is the point at which the line with maximum Sharpe ratio just touches the frontier
without cash
We should hold the tangency portfolio with or without cash
Will look at margin loans later

Tangency portfolio of SPY, IEF, and GLD

In [21]: tang = w / np.sum(w)
pd.Series(tang, index=rets.columns).round(3)

Out[21]: GLD 0.407
IEF -0.063
SPY 0.656
dtype: float64

