# Portfolio Optimization

BUSI 721: Data-Driven Finance I

Kerry Back, Rice University

#### Outline

- 1. Review of portfolio expected returns and risks
- 2. Define mean-variance efficient and global minimum variance portfolios
- 3. Example of quadratic programming with cvxopt
- 4. SPY, IEF, and GLD returns
- 5. GMV portfolio of SPY, IEF, and GLD
- 6. Mean-variance efficient portfolios of SPY, IEF, and GLD
- 7. Include cash with SPY, IEF, and GLD
- 8. Sharpe ratios and the tangency portfolio

#### Review: Portfolio expected return

• With *n* risky assets,

$$\sum_{i=1}^n w_i \mu_i + \left(1-\sum_{i=1}^n w_i
ight)r_f$$

- where  $r_f =$  money market rate if  $\sum w_i < 1$  and
- $r_f =$  margin loan rate if  $\sum w_i > 1$  and
- we are ignoring interest drag and short borrowing fee if any of the  $w_i$  are negative.

#### Review: Reg T

• Initial margin requirement: when positions are put on,

#### $\sum |w_i| \leq 2$

- Afterwards, brokers impose maintenance margin requirements.
- Example: invest 1,000, borrow 1,000, buy 20 shares of \$ 100 stock
  - $\sum w_i = 2$
  - Stock price falls to 75.
  - Now have 1,500 of stock.
  - Portfolio value is 1,500 1,000 = 500. Weight on stock is 1,500 / 500 = 3.
  - Maybe get margin call.

#### Review: Portfolio variance

• Two assets:

$$w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2 w_1 w_2 
ho \sigma_1 \sigma_2$$

• Three assets:

$$w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + w_3^2 \sigma_3^2$$

 $+2w_1w_2
ho_{12}\sigma_1\sigma_2+2w_1w_3
ho_{13}\sigma_1\sigma_3+2w_2w_3
ho_{23}\sigma_2\sigma_3$ 

• Any number of assets:

 $w'\Sigma w$ 

#### Matrix multiplication

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$
$$(g \quad h) \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (ga + hc \quad gb + hd)$$
$$(w_1 \quad w_2) \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = (w_1 \quad w_2) \begin{pmatrix} \sigma_1^2w_1 + \rho\sigma_1\sigma_2w_2 \\ \rho\sigma_1\sigma_2w_1 + \sigma_2w_2 \end{pmatrix}$$
$$= \sigma_1^2w_1^2 + \rho\sigma_2\sigma_2w_1w_2 + \rho\sigma_2\sigma_2w_1w_2 + \sigma_2w_2^2$$

# 2. Mean-Variance Frontier and GMV Portfolio

#### Mean-Variance Frontier

- Mean-variance frontier is the set of portfolios that have the least risk among all portfolios that have their expected return
- Minimum risk problem: minimize variance subject to constraints:
  - achieve a target expected return
  - $\sum w_i = 1$
  - possibly  $w_i \geq 0$  or Reg T
- We can vary the target expected return and trace out the mean-variance frontier
- Some points on the frontier may be inefficient (meaning you can do better on both risk and expected return) because the target expected return is too low.

#### Global minimum variance portfolio

- Solve the minimization problem without a target expected return
- This portfolio (GMV portfolio) has the least risk among all portfolios
- Frontier portfolios are efficient (meaning you can't do better on both risk and expected return) if and only if the target expected return 
   expected return of GMV portfolio.

# 3. Quadratic programming

- Finding efficient portfolios and finding the GMV portfolio are examples of quadratic programming
- Minimize or maximize a quadratic function (squares and products and linear terms)
  - Subject to linear inequality constraints
  - And subject to linear equality constraints

#### Quadratic Programming Example

minimize

$$x_1^2 + x_2^2 - 2x_1 - x_2$$

subject to

$$egin{aligned} x_1 \geq 0 \ x_2 \geq 0 \ x_1 + x_2 = 1 \end{aligned}$$

$$\langle \rangle$$



 $\langle \rangle$ 

#### Notation of cvxopt

minimize

$$rac{1}{2}x'Px+q'x$$

subject to

 $Gx \leq h$ 

and

Ax = b

Our example

$$egin{aligned} P &= egin{pmatrix} 2 & 0 \ 0 & 2 \end{pmatrix} &\Rightarrow & rac{1}{2}x'Px = x_1^2 + x_2^2 \ & q = egin{pmatrix} -2 \ -1 \ -1 \end{pmatrix} &\Rightarrow & q'x = -2x_1 - x_2 \ & G = egin{pmatrix} -1 & 0 \ 0 & -1 \end{pmatrix} &\Rightarrow & Gx = egin{pmatrix} -x_1 \ -x_2 \end{pmatrix} \ & h = egin{pmatrix} 0 \ 0 \end{pmatrix} \ & A = egin{pmatrix} 1 & 1 \end{pmatrix} &\Rightarrow & Ax = x_1 + x_2 \ & b = egin{pmatrix} 1 \end{pmatrix} \end{aligned}$$

 $\langle \rangle$ 

Define arrays



```
In [3]: P = np.array(
             [2., 0.],
                 [0., 2.]
            ]
        q = np.array([-2., -1.]).reshape(2, 1)
        G = np.array(
             [
                 [-1., 0.],
                 [0., -1.]
            ]
        h = np.array([0., 0.]).reshape(2, 1)
        A = np.array([1., 1.]).reshape(1, 2)
        b = np.array([1.]).reshape(1, 1)
```

#### Solve



```
In [4]: from cvxopt import matrix
from cvxopt.solvers import qp
sol = qp(
    P=matrix(P),
    q=matrix(q),
    G=matrix(G),
    h=matrix(h),
    A=matrix(A),
    b=matrix(b)
)
np.array(sol["x"])
```

|                         | pcost       | dcost       | gap   | pres  | dres  |  |
|-------------------------|-------------|-------------|-------|-------|-------|--|
| 0:                      | -1.1111e+00 | -2.2222e+00 | 1e+00 | 1e-16 | 1e+00 |  |
| 1:                      | -1.1231e+00 | -1.1680e+00 | 4e-02 | 1e-16 | 4e-02 |  |
| 2:                      | -1.1250e+00 | -1.1261e+00 | 1e-03 | 2e-16 | 3e-04 |  |
| 3:                      | -1.1250e+00 | -1.1250e+00 | 1e-05 | 6e-17 | 3e-06 |  |
| 4:                      | -1.1250e+00 | -1.1250e+00 | 1e-07 | 3e-16 | 3e-08 |  |
| Optimal solution found. |             |             |       |       |       |  |

Out[4]: array([[0.7499999], [0.2500001]])

 $\langle \rangle$ 

# 4. Stock, Bond, and Gold ETFs

- SPY, IEF, and GLD adjusted closing prices from Yahoo
- Downsample to monthly
- Percent changes are monthly returns
- Compute historical means and covariance matrix

```
In [5]: import yfinance as yf
tickers = ["SPY", "IEF", "GLD"]
prices = yf.download(tickers, start="1970-01-01")["Adj Close"]
prices = prices.resample("M").last()
rets = prices.pct_change().dropna()
rets.head(3)
```

| Out[5]: |            | GLD       | IEF       | SPY       |
|---------|------------|-----------|-----------|-----------|
|         | Date       |           |           |           |
|         | 2004-12-31 | -0.029255 | 0.011674  | 0.030121  |
|         | 2005-01-31 | -0.036073 | 0.008710  | -0.022421 |
|         | 2005-02-28 | 0.031028  | -0.013683 | 0.020904  |

 $\langle \rangle$ 

Means, risks and correlations

#### In [6]: 12 \* rets.mean()

Out[6]: GLD 0.087096 IEF 0.031683 SPY 0.100341 dtype: float64

#### In [7]: np.sqrt(12) \* rets.std()

Out[7]: GLD 0.169435 IEF 0.064872 SPY 0.150749 dtype: float64

| In [8]: | rets.corr() |
|---------|-------------|
|---------|-------------|

| Out[8]: |     | GLD      | IEF       | SPY       |
|---------|-----|----------|-----------|-----------|
|         | GLD | 1.000000 | 0.317975  | 0.084318  |
|         | IEF | 0.317975 | 1.000000  | -0.121379 |
|         | SPY | 0.084318 | -0.121379 | 1.000000  |

In [9]: mu = rets.mean().to\_numpy()
Sigma = rets.cov().to\_numpy()

### 5. GMV Portfolio of Stocks, Bonds, and Gold

#### GMV minimization problem

minimize

$$rac{1}{2}w'\Sigma w$$

subject to

$$\sum w_i = 1 \quad \Leftrightarrow \quad \iota' w = 1$$

where  $\iota$  is a column vector of ones.

#### cvxopt formulation

• 
$$P = \Sigma$$
  
•  $q = 0$ 

 $egin{array}{cccc} A=egin{pmatrix} 1&1&1\ b=egin{pmatrix} 1\end{pmatrix} \ b=egin{pmatrix} b\end{pmatrix}$ 

Define arrays

# In [10]: P = Sigma q = np.zeros((3, 1)) A = np.ones((1, 3)) b = np.ones((1, 1))

#### Compute the GMV portfolio

```
In [11]: sol = qp(
        P=matrix(P),
        q=matrix(q),
        A=matrix(A),
        b=matrix(b)
     )

import pandas as pd
gmv = pd.Series(sol["x"], index=rets.columns)
gmv
```

Out[11]: GLD -0.001301 IEF 0.817025 SPY 0.184276 dtype: float64

#### Risk and expected return of GMV portfolio

#### In [12]: w = gmv.to\_numpy()

```
print(f"\nGMV annualized std dev is {np.sqrt(12*w@Sigma@w):.2%}")
print(f"GMV annualized mean is {12*mu@w: .2%}")
```

```
print(f"\nIEF annualized std dev is {np.sqrt(12)*rets.IEF.std():.2%}")
print(f"IEF annualized mean is {12*rets.IEF.mean():.2%}")
```

GMV annualized std dev is 5.67% GMV annualized mean is 4.43%

IEF annualized std dev is 6.49% IEF annualized mean is 3.17%



< >

# 6. Efficient portfolios of SPY, IEF, and GLD

#### Minimize risk with target expected return

minimize

$$rac{1}{2}w'\Sigma w$$

subject to

 $\mu' w = r$  $\iota' w = 1$ 

where r = target expected return and  $\iota$  is a column vector of ones.

#### cvxopt formulation

•  $P = \Sigma$ • q = 0

$$A=egin{pmatrix} \mu_1&\mu_2&\mu_3\ 1&1&1\ \end{pmatrix} \ b=egin{pmatrix}r\ 1\end{pmatrix}$$

Define arrays



```
In [14]: # example target monthly expected return
r = 0.06/12
P = Sigma
q = np.zeros((3, 1))
A = np.array(
       [
            mu,
            [1., 1., 1.]
       ]
       b = np.array([r, 1]).reshape(2, 1)
```

# $\langle \rangle$

Compute the efficient portfolio

```
In [15]: sol = qp(
    P=matrix(P),
    q=matrix(q),
    A=matrix(A),
    b=matrix(b)
)
efficient = pd.Series(sol["x"], index=rets.columns)
efficient
```

IEF 0.565289 SPY 0.319245

dtype: float64



## 7. Include cash with SPY, IEF, and GLD

#### Target expected return with cash

• Expected return is

$$\mu'w+(1-\iota'w)r_f=r_f+(\mu-r_f\iota')w$$

• Equals target expected return *r* if and only if

$$(\mu - r_f \iota)' w = r - r_f$$

• So,

$$A = egin{pmatrix} \mu_1 - r_f & \mu_2 - r_f & \mu_3 - r_f \end{pmatrix} \ b = egin{pmatrix} b = egin{pmatrix} r - r_f \end{pmatrix} \end{pmatrix}$$

Define arrays



# In [17]: # example monthly interest rate rf = 0.03/12 # example target expected return r = 0.06/12 P = Sigma q = np.zeros((3, 1)) A = (mu - rf\*np.ones(3)).reshape(1, 3) b = np.array([r-rf]).reshape(1, 1)

#### Compute the efficient portfolio

```
In [18]: sol = qp(
    P=matrix(P),
    q=matrix(q),
    A=matrix(A),
    b=matrix(b)
)
efficient_with_cash = pd.Series(sol["x"], index=rets.columns)
efficient_with_cash
Out[18]: GLD    0.176189
IEF   -0.027139
SPY    0.284129
```

dtype: float64



# 8. Sharpe Ratios and the Tangency Portfolio

#### Sharpe ratio

• The Sharpe ratio is defined as

Expected Return - Risk-Free Rate

Standard Deviation

- To annualize a monthly Sharpe ratio,
  - numerator should be multiplied by 12,
  - denominator should be multiplied by  $\sqrt{12}$
  - so ratio should be multiplied by  $\sqrt{12}$

#### Sharpe ratios of SPY, IEF, and GLD

```
In [20]: sharpes = np.sqrt(12)*(rets.mean() - rf) / rets.std()
sharpe_efficient = np.sqrt(12)*(r - rf) / np.sqrt(w@Sigma@w)
print(f"SPY = {sharpes.SPY:.2%}")
print(f"IEF = {sharpes.IEF:.2%}")
print(f"GLD = {sharpes.GLD:.2%}")
print(f"Efficient portfolio with cash = {sharpe_efficient:.2%}")
```

SPY = 46.66%
IEF = 2.59%
GLD = 33.70%
Efficient portfolio with cash = 55.43%

#### Geometry of Sharpe ratios

- Sharpe ratio is slope of line connecting (std dev=0, mean=rf) with the (std dev, mean) of the asset or portfolio
- Efficient portfolios with cash all have the same Sharpe ratio, so they all lie on the same line
- This is the maximum possible Sharpe ratio the line is the furthest northwest in the (std dev, mean) diagram.

#### Tangency portfolio

- Tangency portfolio is an efficient portfolio with cash that does not use cash
- It is efficient with or without cash
- It is the point at which the line with maximum Sharpe ratio just touches the frontier without cash
- We should hold the tangency portfolio with or without cash
- Will look at margin loans later

#### Tangency portfolio of SPY, IEF, and GLD

# In [21]: tang = w / np.sum(w) pd.Series(tang, index=rets.columns).round(3)

Out[21]: GLD 0.407 IEF -0.063 SPY 0.656 dtype: float64