Markets and More Portfolio Optimization

BUSI 721: Data-Driven Finance I
Kerry Back, Rice University

Outline

1. How markets work (and why your broker doesn't need to charge commissions)
2. Stocks, bonds, and gold over a longer horizon
3. Optimal portfolios without short sales
4. Markets

Limit orders versus market orders

- Market order (usual order) is an order to trade at the market price. It will always execute.
- A limit order is an order to trade at a specified (limit) price or better.
- E.g., buy at $\$ 50$ or less
- E.g., sell at $\$ 50$ or more
- A marketable limit order is a limit order that can be executed immediately, because its limit price is available in the market.
- In general, limit orders may or may not execute.

Limit order books

- Each exchange keeps a book of limit orders
- Orders to buy are called bids
- Orders to sell are called offers
- Incoming market orders are executed against the best available limit order
- A market buy order executes against the lowest priced offer
- A market sell order executes against the highest priced bid
- The lowest price offer and highest price bid are called the best bid and offer or the inside quotes.

SPDR S\&P 500 ETF TR TR UNIT					
Orders Accepted 1,153,586			Total Volume 7,689,062		
TOP OF BOOK			LAST 10 TRADES		
	SHARES	PRICE	TIME	PRICE	SHARES
	11,000	180.07	14:42:13	180.03	100
	12,500	180.06	14:42:11	180.02	100
	12,900	180.05	14:42:11	180.01	100
	9,700	180.04	14:42:09	180.01	100
	1,100	180.03	14:42:09	180.01	200
$\begin{aligned} & \text { © } \\ & \stackrel{O}{\mathbf{m}} \end{aligned}$	6,400	180.02	14:42:08	180.01	100
	9,700	180.01	14:42:06	180.01	100
	9,600	180.00	14:42:06	180.01	100
	14,700	179.99	14:42:06	180.01	100
	11,500	179.98	14:42:06	180.01	100

The best bid is 180.02 andthebestofferis 180.03 .

Bid-ask spread

- Offer prices are also called ask prices.
- The inside quotes can be called the best bid and ask.
- The difference between the best ask and the best bid is called the bid-ask spread.
- Some traders post bids and offers to earn the spread rather than to trade.
- They try to make round trips to keep inventories low.
- Called market makers or dealer.
- Nowadays high frequency traders (fast machines and connections and trade via algorithms)

Nasdaq best bid and offer

CVX bid and offer

NMS (National Market System)

- Reg NMS requires your broker to execute your order at the exchange (or nonexchange venue) that provides the best price.
- The national best bid and offer are called the NBBO.
- Reg NMS requires execution at the NBBO.

U.S. stock exchanges

- NYSE
- NYSE Mkt
- NYSE Arca
- Nasdaq
- Nasdaq Boston
- Nasdaq Philadelphia
- BATS (owned by Chicago Board Options Exchange=CBOE)
- IEX

Non-exchange trading venues

- Trades can be executed outside of exchanges provided the execution is at the NBBO or better.
- Institutions like Citadel fill orders to earn the spread.
- To get orders, they kick back part of the spread to brokers (payment for order flow).

Make or take fees

- Exchanges have make or take fees
- Limit order = make liquidity
- Market order = take liquidity
- Some exchanges pay limit orders and charge market orders
- Other exchanges pay market orders and charge limit orders
- In general, a means of attracting order flow.
- Fees are limited by the SEC to no more than $3 / 10$ of a penny per share.

Broker order routing

- Schwab\{target="_blank"\}
- e-Trade\{target="_blank"\}
- Interactive Brokers\{target="_blank"\}

Chairman of the SEC on order routing
Gary Gensler on YouTube
2. Stocks, bonds, and gold

- IEF, SPY, and GLD history is not long enough, especially for estimating expected returns
- IEF returns as illustration
- Can use stock and bond indices over longer time period
- Data from Aswath Damodoran (NYU)
- Stock and bond correlation was > 0 in 20th century, < 0 in 21 st century
- What does the future hold?

[^0]In [41]: import yfinance as yf
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_style("whitegrid")
price = yf.download("IEF", start=1990)["Adj Close"]
price.plot()
plt.ylabel("IEF")
plt.show()
$[* 100 \% \% *] ~ o f ~ c o m p l e t e d$

20-year Treasury means from Damodoran's data

```
import pandas as pd
df = pd.read_csv(
    'https://www.dropbox.com/s/hgwte6swx57jqcv/nominal_sbb.csv?dl=1',
    index_col="Year"
)
means = df.Treasuries.rolling(20).mean()
means.plot()
plt.ylabel("Trailing 20-Year Mean")
plt.show()
```


In [43]: df.head()
Out[43]: S\&P $\mathbf{5 0 0}$ TBills Treasuries Corporates

Year				
$\mathbf{1 9 2 8}$	0.438112	0.0308	0.008355	0.032196
$\mathbf{1 9 2 9}$	-0.082979	0.0316	0.042038	0.030179
$\mathbf{1 9 3 0}$	-0.251236	0.0455	0.045409	0.005398
$\mathbf{1 9 3 1}$	-0.438375	0.0231	-0.025589	-0.156808
1932	-0.086424	0.0107	0.087903	0.235896

40-year means

In [44]: means = df.Treasuries.rolling(40).mean()
means.plot()
plt.ylabel("Trailing 40-Year Mean")
plt.show()

20-Year Stock and Bond Correlations

```
In [45]: corrs = []
for i in range(20, len(df.index)):
    corr = df.iloc[(i-20):i]["S&P 500"].corr(df.Treasuries)
        corrs.append(corr)
plt.plot(df.index[20:], corrs)
```

Out[45]: [<matplotlib.lines.Line2D at 0x1fdf64aa290>]

3. Optimal portfolios without short sales

Example

```
In [46]: import numpy as np
rf = 0.03
mu = [0.04, 0.10, 0.10]
stdevs = [0.2, 0.2, 0.2]
corrs = [
    [1., 0., 0.8],
    [0., 1., 0.3],
    [0.8, 0.3, 1.]
]
Sigma = np.diag(stdevs) @ corrs @ np.diag(stdevs)
```

Define arrays

In [47]: \# example target expected return
$r=0.08$

P = Sigma

$q=n p \cdot z e r o s(3) \cdot$.reshape $(3,1)$
A = (mu - rf*np.ones(3)).reshape(1, 3)
b = np.array ([r-rf]).reshape (1, 1)

Compute the efficient portfolio (with short sales)

```
In [48]: from cvxopt import matrix
from cvxopt.solvers import qp
sol = qp(
    P=matrix(P),
    q=matrix(q),
    A=matrix(A),
    b=matrix(b)
)
pd.Series(sol["x"], index=range(1, 4)).round(3)
Out[48]: 1 -0.497
2 0.109
30.676
dtype: float64
```

Compute the efficient portfolio (without short sales)

```
In [49]: G = -np.identity(3)
    h = np.zeros((3, 1))
    sol = qp(
        P=matrix(P),
        q=matrix(q),
        G=matrix(G),
        h=matrix(h),
        A=matrix(A),
        b=matrix(b)
)
pd.Series(sol["x"], index=range(1, 4)).round(3)
    pcost dcost gap pres dres
    0: 7.0157e-03 -7.5505e-01 8e-01 0e+00 2e+00
    1: 7.0089e-03 -1.4634e-03 8e-03 8e-17 3e-02
    2: 6.7723e-03 6.5362e-03 2e-04 1e-17 3e-04
    3: 6.6347e-03 6.6316e-03 3e-06 8e-17 4e-06
    4: 6.6327e-03 6.6326e-03 3e-08 8e-17 4e-08
Optimal solution found.
Out[49]: 1 0.000
2 0.357
3 0.357
dtype: float64
```


[^0]: IEF returns

