
Markets and More Portfolio
Optimization
BUSI 721: Data-Driven Finance I
Kerry Back, Rice University

Outline
1. How markets work (and why your broker doesn't need to charge commissions)
2. Stocks, bonds, and gold over a longer horizon
3. Optimal portfolios without short sales

1. Markets

Limit orders versus market orders
Market order (usual order) is an order to trade at the market price. It will always
execute.
A limit order is an order to trade at a specified (limit) price or better.

E.g., buy at $50 or less
E.g., sell at $50 or more

A marketable limit order is a limit order that can be executed immediately, because
its limit price is available in the market.
In general, limit orders may or may not execute.

Limit order books
Each exchange keeps a book of limit orders
Orders to buy are called bids
Orders to sell are called offers
Incoming market orders are executed against the best available limit order

A market buy order executes against the lowest priced offer
A market sell order executes against the highest priced bid

The lowest price offer and highest price bid are called the best bid and offer or the
inside quotes.

The best bid is 180.03.180.02andthebestofferis

Bid-ask spread
Offer prices are also called ask prices.
The inside quotes can be called the best bid and ask.
The difference between the best ask and the best bid is called the bid-ask spread.
Some traders post bids and offers to earn the spread rather than to trade.

They try to make round trips to keep inventories low.
Called market makers or dealer.
Nowadays high frequency traders (fast machines and connections and
trade via algorithms).

Nasdaq best bid and o�er
CVX bid and offer

https://www.nasdaq.com/market-activity/stocks/cvx/real-time

NMS (National Market System)
Reg NMS requires your broker to execute your order at the exchange (or non-
exchange venue) that provides the best price.
The national best bid and offer are called the NBBO.
Reg NMS requires execution at the NBBO.

U.S. stock exchanges
NYSE
NYSE Mkt
NYSE Arca
Nasdaq
Nasdaq Boston
Nasdaq Philadelphia
BATS (owned by Chicago Board Options Exchange=CBOE)
IEX

Non-exchange trading venues
Trades can be executed outside of exchanges provided the execution is at the
NBBO or better.
Institutions like Citadel fill orders to earn the spread.
To get orders, they kick back part of the spread to brokers (payment for order
flow).

Make or take fees
Exchanges have make or take fees

Limit order = make liquidity
Market order = take liquidity

Some exchanges pay limit orders and charge market orders
Other exchanges pay market orders and charge limit orders
In general, a means of attracting order flow.
Fees are limited by the SEC to no more than 3/10 of a penny per share.

Broker order routing
{target="_blank"}
{target="_blank"}

{target="_blank"}

Schwab
e-Trade
Interactive Brokers

https://www.schwab.com/legal/order-routing-1
https://us.etrade.com/l/quarterly-order-routing-report
https://www.interactivebrokers.com/download/1Q_2019_IB_ORDER_ROUTING_REPORT.pdf

Chairman of the SEC on order routing
Gary Gensler on YouTube

https://www.youtube.com/embed/2HSWM3fKldY

2. Stocks, bonds, and gold

IEF, SPY, and GLD history is not long enough, especially for estimating expected
returns

IEF returns as illustration
Can use stock and bond indices over longer time period

Data from Aswath Damodoran (NYU)
Stock and bond correlation was > 0 in 20th century, < 0 in 21st century

What does the future hold?

IEF returns

In [41]: import yfinance as yf
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_style("whitegrid")

price = yf.download("IEF", start=1990)["Adj Close"]
price.plot()
plt.ylabel("IEF")
plt.show()

[*********************100%%**********************] 1 of 1 completed

20-year Treasury means from Damodoran's data

In [42]: import pandas as pd
df = pd.read_csv(
 'https://www.dropbox.com/s/hgwte6swx57jqcv/nominal_sbb.csv?dl=1',
 index_col="Year"
)

means = df.Treasuries.rolling(20).mean()
means.plot()
plt.ylabel("Trailing 20-Year Mean")
plt.show()

S&P 500 TBills Treasuries Corporates

Year

1928 0.438112 0.0308 0.008355 0.032196

1929 -0.082979 0.0316 0.042038 0.030179

1930 -0.251236 0.0455 0.045409 0.005398

1931 -0.438375 0.0231 -0.025589 -0.156808

1932 -0.086424 0.0107 0.087903 0.235896

In [43]: df.head()

Out[43]:

40-year means

In [44]: means = df.Treasuries.rolling(40).mean()
means.plot()
plt.ylabel("Trailing 40-Year Mean")
plt.show()

20-Year Stock and Bond Correlations

In [45]: corrs = []
for i in range(20, len(df.index)):
 corr = df.iloc[(i-20):i]["S&P 500"].corr(df.Treasuries)
 corrs.append(corr)

plt.plot(df.index[20:], corrs)

Out[45]: [<matplotlib.lines.Line2D at 0x1fdf64aa290>]

3. Optimal portfolios without short sales

Example

In [46]: import numpy as np

rf = 0.03
mu = [0.04, 0.10, 0.10]
stdevs = [0.2, 0.2, 0.2]
corrs = [
 [1., 0., 0.8],
 [0., 1., 0.3],
 [0.8, 0.3, 1.]
]
Sigma = np.diag(stdevs) @ corrs @ np.diag(stdevs)

De�ne arrays

In [47]: # example target expected return
r = 0.08

P = Sigma
q = np.zeros(3).reshape(3, 1)
A = (mu - rf*np.ones(3)).reshape(1, 3)
b = np.array([r-rf]).reshape(1, 1)

Compute the e�cient portfolio (with short sales)

In [48]: from cvxopt import matrix
from cvxopt.solvers import qp

sol = qp(
 P=matrix(P),
 q=matrix(q),
 A=matrix(A),
 b=matrix(b)
)
pd.Series(sol["x"], index=range(1, 4)).round(3)

Out[48]: 1 -0.497
2 0.109
3 0.676
dtype: float64

Compute the e�cient portfolio (without short sales)

In [49]: G = -np.identity(3)
h = np.zeros((3, 1))

sol = qp(
 P=matrix(P),
 q=matrix(q),
 G=matrix(G),
 h=matrix(h),
 A=matrix(A),
 b=matrix(b)
)
pd.Series(sol["x"], index=range(1, 4)).round(3)

 pcost dcost gap pres dres
 0: 7.0157e-03 -7.5505e-01 8e-01 0e+00 2e+00
 1: 7.0089e-03 -1.4634e-03 8e-03 8e-17 3e-02
 2: 6.7723e-03 6.5362e-03 2e-04 1e-17 3e-04
 3: 6.6347e-03 6.6316e-03 3e-06 8e-17 4e-06
 4: 6.6327e-03 6.6326e-03 3e-08 8e-17 4e-08
Optimal solution found.

Out[49]: 1 0.000
2 0.357
3 0.357
dtype: float64

